1094 lines
42 KiB
C++
Executable File
1094 lines
42 KiB
C++
Executable File
//////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
|
|
// Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
//
|
|
// See http://www.boost.org/libs/interprocess for documentation.
|
|
//
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef BOOST_INTERPROCESS_FLAT_SET_HPP
|
|
#define BOOST_INTERPROCESS_FLAT_SET_HPP
|
|
|
|
#if (defined _MSC_VER) && (_MSC_VER >= 1200)
|
|
# pragma once
|
|
#endif
|
|
|
|
#include <boost/interprocess/detail/config_begin.hpp>
|
|
#include <boost/interprocess/detail/workaround.hpp>
|
|
|
|
#include <boost/interprocess/interprocess_fwd.hpp>
|
|
#include <utility>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <boost/interprocess/containers/detail/flat_tree.hpp>
|
|
#include <boost/interprocess/detail/mpl.hpp>
|
|
#include <boost/interprocess/detail/move.hpp>
|
|
|
|
|
|
namespace boost { namespace interprocess {
|
|
|
|
/// @cond
|
|
// Forward declarations of operators < and ==, needed for friend declaration.
|
|
|
|
template <class T, class Pred, class Alloc>
|
|
class flat_set;
|
|
|
|
template <class T, class Pred, class Alloc>
|
|
inline bool operator==(const flat_set<T,Pred,Alloc>& x,
|
|
const flat_set<T,Pred,Alloc>& y);
|
|
|
|
template <class T, class Pred, class Alloc>
|
|
inline bool operator<(const flat_set<T,Pred,Alloc>& x,
|
|
const flat_set<T,Pred,Alloc>& y);
|
|
/// @endcond
|
|
|
|
//! flat_set is a Sorted Associative Container that stores objects of type Key.
|
|
//! flat_set is a Simple Associative Container, meaning that its value type,
|
|
//! as well as its key type, is Key. It is also a Unique Associative Container,
|
|
//! meaning that no two elements are the same.
|
|
//!
|
|
//! flat_set is similar to std::set but it's implemented like an ordered vector.
|
|
//! This means that inserting a new element into a flat_set invalidates
|
|
//! previous iterators and references
|
|
//!
|
|
//! Erasing an element of a flat_set invalidates iterators and references
|
|
//! pointing to elements that come after (their keys are bigger) the erased element.
|
|
template <class T, class Pred, class Alloc>
|
|
class flat_set
|
|
{
|
|
/// @cond
|
|
private:
|
|
typedef detail::flat_tree<T, T, detail::identity<T>, Pred, Alloc> tree_t;
|
|
tree_t m_flat_tree; // flat tree representing flat_set
|
|
/// @endcond
|
|
|
|
public:
|
|
// typedefs:
|
|
typedef typename tree_t::key_type key_type;
|
|
typedef typename tree_t::value_type value_type;
|
|
typedef typename tree_t::pointer pointer;
|
|
typedef typename tree_t::const_pointer const_pointer;
|
|
typedef typename tree_t::reference reference;
|
|
typedef typename tree_t::const_reference const_reference;
|
|
typedef typename tree_t::key_compare key_compare;
|
|
typedef typename tree_t::value_compare value_compare;
|
|
typedef typename tree_t::iterator iterator;
|
|
typedef typename tree_t::const_iterator const_iterator;
|
|
typedef typename tree_t::reverse_iterator reverse_iterator;
|
|
typedef typename tree_t::const_reverse_iterator const_reverse_iterator;
|
|
typedef typename tree_t::size_type size_type;
|
|
typedef typename tree_t::difference_type difference_type;
|
|
typedef typename tree_t::allocator_type allocator_type;
|
|
typedef typename tree_t::stored_allocator_type stored_allocator_type;
|
|
|
|
//! <b>Effects</b>: Constructs an empty flat_map using the specified
|
|
//! comparison object and allocator.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
explicit flat_set(const Pred& comp = Pred(),
|
|
const allocator_type& a = allocator_type())
|
|
: m_flat_tree(comp, a)
|
|
{}
|
|
|
|
//! <b>Effects</b>: Constructs an empty map using the specified comparison object and
|
|
//! allocator, and inserts elements from the range [first ,last ).
|
|
//!
|
|
//! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
|
|
//! comp and otherwise N logN, where N is last - first.
|
|
template <class InputIterator>
|
|
flat_set(InputIterator first, InputIterator last,
|
|
const Pred& comp = Pred(),
|
|
const allocator_type& a = allocator_type())
|
|
: m_flat_tree(comp, a)
|
|
{ m_flat_tree.insert_unique(first, last); }
|
|
|
|
//! <b>Effects</b>: Copy constructs a map.
|
|
//!
|
|
//! <b>Complexity</b>: Linear in x.size().
|
|
flat_set(const flat_set<T,Pred,Alloc>& x)
|
|
: m_flat_tree(x.m_flat_tree) {}
|
|
|
|
//! <b>Effects</b>: Move constructs a map. Constructs *this using x's resources.
|
|
//!
|
|
//! <b>Complexity</b>: Construct.
|
|
//!
|
|
//! <b>Postcondition</b>: x is emptied.
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
flat_set(const detail::moved_object<flat_set<T,Pred,Alloc> >& mx)
|
|
: m_flat_tree(detail::move_impl(mx.get().m_flat_tree)) {}
|
|
#else
|
|
flat_set(flat_set<T,Pred,Alloc> && mx)
|
|
: m_flat_tree(detail::move_impl(mx.m_flat_tree)) {}
|
|
#endif
|
|
|
|
//! <b>Effects</b>: Makes *this a copy of x.
|
|
//!
|
|
//! <b>Complexity</b>: Linear in x.size().
|
|
flat_set<T,Pred,Alloc>& operator=(const flat_set<T, Pred, Alloc>& x)
|
|
{ m_flat_tree = x.m_flat_tree; return *this; }
|
|
|
|
//! <b>Effects</b>: Makes *this a copy of x.
|
|
//!
|
|
//! <b>Complexity</b>: Linear in x.size().
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
flat_set<T,Pred,Alloc>& operator=(const detail::moved_object<flat_set<T, Pred, Alloc> > &mx)
|
|
{ m_flat_tree = detail::move_impl(mx.get().m_flat_tree); return *this; }
|
|
|
|
#else
|
|
flat_set<T,Pred,Alloc>& operator=(flat_set<T, Pred, Alloc> &&mx)
|
|
{ m_flat_tree = detail::move_impl(mx.m_flat_tree); return *this; }
|
|
|
|
#endif
|
|
|
|
//! <b>Effects</b>: Returns the comparison object out
|
|
//! of which a was constructed.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
key_compare key_comp() const
|
|
{ return m_flat_tree.key_comp(); }
|
|
|
|
//! <b>Effects</b>: Returns an object of value_compare constructed out
|
|
//! of the comparison object.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
value_compare value_comp() const
|
|
{ return m_flat_tree.key_comp(); }
|
|
|
|
//! <b>Effects</b>: Returns a copy of the Allocator that
|
|
//! was passed to the object's constructor.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
allocator_type get_allocator() const
|
|
{ return m_flat_tree.get_allocator(); }
|
|
|
|
const stored_allocator_type &get_stored_allocator() const
|
|
{ return m_flat_tree.get_stored_allocator(); }
|
|
|
|
stored_allocator_type &get_stored_allocator()
|
|
{ return m_flat_tree.get_stored_allocator(); }
|
|
|
|
//! <b>Effects</b>: Returns an iterator to the first element contained in the container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
iterator begin()
|
|
{ return m_flat_tree.begin(); }
|
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
const_iterator begin() const
|
|
{ return m_flat_tree.begin(); }
|
|
|
|
//! <b>Effects</b>: Returns an iterator to the end of the container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
iterator end()
|
|
{ return m_flat_tree.end(); }
|
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
const_iterator end() const
|
|
{ return m_flat_tree.end(); }
|
|
|
|
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
|
|
//! of the reversed container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
reverse_iterator rbegin()
|
|
{ return m_flat_tree.rbegin(); }
|
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
|
|
//! of the reversed container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
const_reverse_iterator rbegin() const
|
|
{ return m_flat_tree.rbegin(); }
|
|
|
|
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
|
|
//! of the reversed container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
reverse_iterator rend()
|
|
{ return m_flat_tree.rend(); }
|
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
|
|
//! of the reversed container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
const_reverse_iterator rend() const
|
|
{ return m_flat_tree.rend(); }
|
|
|
|
//! <b>Effects</b>: Returns true if the container contains no elements.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
bool empty() const
|
|
{ return m_flat_tree.empty(); }
|
|
|
|
//! <b>Effects</b>: Returns the number of the elements contained in the container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
size_type size() const
|
|
{ return m_flat_tree.size(); }
|
|
|
|
//! <b>Effects</b>: Returns the largest possible size of the container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
size_type max_size() const
|
|
{ return m_flat_tree.max_size(); }
|
|
|
|
//! <b>Effects</b>: Swaps the contents of *this and x.
|
|
//! If this->allocator_type() != x.allocator_type() allocators are also swapped.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
void swap(flat_set<T,Pred,Alloc>& x)
|
|
{ m_flat_tree.swap(x.m_flat_tree); }
|
|
|
|
//! <b>Effects</b>: Swaps the contents of *this and x.
|
|
//! If this->allocator_type() != x.allocator_type() allocators are also swapped.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
void swap(const detail::moved_object <flat_set<T,Pred,Alloc> >& mx)
|
|
{ this->swap(mx.get()); }
|
|
#else
|
|
void swap(flat_set<T,Pred,Alloc> && mx)
|
|
{ this->swap(mx); }
|
|
#endif
|
|
|
|
//! <b>Effects</b>: Inserts x if and only if there is no element in the container
|
|
//! with key equivalent to the key of x.
|
|
//!
|
|
//! <b>Returns</b>: The bool component of the returned pair is true if and only
|
|
//! if the insertion takes place, and the iterator component of the pair
|
|
//! points to the element with key equivalent to the key of x.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
|
|
//! to the elements with bigger keys than x.
|
|
//!
|
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
|
|
std::pair<iterator,bool> insert(const value_type& x)
|
|
{ return m_flat_tree.insert_unique(x); }
|
|
|
|
//! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and
|
|
//! only if there is no element in the container with key equivalent to the key of x.
|
|
//!
|
|
//! <b>Returns</b>: The bool component of the returned pair is true if and only
|
|
//! if the insertion takes place, and the iterator component of the pair
|
|
//! points to the element with key equivalent to the key of x.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
|
|
//! to the elements with bigger keys than x.
|
|
//!
|
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
std::pair<iterator,bool> insert(const detail::moved_object<value_type>& x)
|
|
{ return m_flat_tree.insert_unique(x); }
|
|
#else
|
|
std::pair<iterator,bool> insert(value_type && x)
|
|
{ return m_flat_tree.insert_unique(detail::move_impl(x)); }
|
|
#endif
|
|
|
|
//! <b>Effects</b>: Inserts a copy of x in the container if and only if there is
|
|
//! no element in the container with key equivalent to the key of x.
|
|
//! p is a hint pointing to where the insert should start to search.
|
|
//!
|
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
|
|
//! to the key of x.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
|
|
//! right before p) plus insertion linear to the elements with bigger keys than x.
|
|
//!
|
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
|
|
iterator insert(iterator position, const value_type& x)
|
|
{ return m_flat_tree.insert_unique(position, x); }
|
|
|
|
//! <b>Effects</b>: Inserts an element move constructed from x in the container.
|
|
//! p is a hint pointing to where the insert should start to search.
|
|
//!
|
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
|
|
//! right before p) plus insertion linear to the elements with bigger keys than x.
|
|
//!
|
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
iterator insert(iterator position, const detail::moved_object<value_type>& x)
|
|
{ return m_flat_tree.insert_unique(position, x); }
|
|
#else
|
|
iterator insert(iterator position, value_type && x)
|
|
{ return m_flat_tree.insert_unique(position, detail::move_impl(x)); }
|
|
#endif
|
|
|
|
//! <b>Requires</b>: i, j are not iterators into *this.
|
|
//!
|
|
//! <b>Effects</b>: inserts each element from the range [i,j) if and only
|
|
//! if there is no element with key equivalent to the key of that element.
|
|
//!
|
|
//! <b>Complexity</b>: N log(size()+N) (N is the distance from i to j)
|
|
//! search time plus N*size() insertion time.
|
|
//!
|
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
|
|
template <class InputIterator>
|
|
void insert(InputIterator first, InputIterator last)
|
|
{ m_flat_tree.insert_unique(first, last); }
|
|
|
|
//! <b>Effects</b>: Erases the element pointed to by position.
|
|
//!
|
|
//! <b>Returns</b>: Returns an iterator pointing to the element immediately
|
|
//! following q prior to the element being erased. If no such element exists,
|
|
//! returns end().
|
|
//!
|
|
//! <b>Complexity</b>: Linear to the elements with keys bigger than position
|
|
//!
|
|
//! <b>Note</b>: Invalidates elements with keys
|
|
//! not less than the erased element.
|
|
iterator erase(const_iterator position)
|
|
{ return m_flat_tree.erase(position); }
|
|
|
|
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
|
|
//!
|
|
//! <b>Returns</b>: Returns the number of erased elements.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic search time plus erasure time
|
|
//! linear to the elements with bigger keys.
|
|
size_type erase(const key_type& x)
|
|
{ return m_flat_tree.erase(x); }
|
|
|
|
//! <b>Effects</b>: Erases all the elements in the range [first, last).
|
|
//!
|
|
//! <b>Returns</b>: Returns last.
|
|
//!
|
|
//! <b>Complexity</b>: size()*N where N is the distance from first to last.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic search time plus erasure time
|
|
//! linear to the elements with bigger keys.
|
|
iterator erase(const_iterator first, const_iterator last)
|
|
{ return m_flat_tree.erase(first, last); }
|
|
|
|
//! <b>Effects</b>: erase(a.begin(),a.end()).
|
|
//!
|
|
//! <b>Postcondition</b>: size() == 0.
|
|
//!
|
|
//! <b>Complexity</b>: linear in size().
|
|
void clear()
|
|
{ m_flat_tree.clear(); }
|
|
|
|
//! <b>Effects</b>: Tries to deallocate the excess of memory created
|
|
// with previous allocations. The size of the vector is unchanged
|
|
//!
|
|
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
|
|
//!
|
|
//! <b>Complexity</b>: Linear to size().
|
|
void shrink_to_fit()
|
|
{ m_flat_tree.shrink_to_fit(); }
|
|
|
|
//! <b>Returns</b>: An iterator pointing to an element with the key
|
|
//! equivalent to x, or end() if such an element is not found.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic.
|
|
iterator find(const key_type& x)
|
|
{ return m_flat_tree.find(x); }
|
|
|
|
//! <b>Returns</b>: A const_iterator pointing to an element with the key
|
|
//! equivalent to x, or end() if such an element is not found.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic.s
|
|
const_iterator find(const key_type& x) const
|
|
{ return m_flat_tree.find(x); }
|
|
|
|
//! <b>Returns</b>: The number of elements with key equivalent to x.
|
|
//!
|
|
//! <b>Complexity</b>: log(size())+count(k)
|
|
size_type count(const key_type& x) const
|
|
{ return m_flat_tree.find(x) == m_flat_tree.end() ? 0 : 1; }
|
|
|
|
//! <b>Returns</b>: An iterator pointing to the first element with key not less
|
|
//! than k, or a.end() if such an element is not found.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic
|
|
iterator lower_bound(const key_type& x)
|
|
{ return m_flat_tree.lower_bound(x); }
|
|
|
|
//! <b>Returns</b>: A const iterator pointing to the first element with key not
|
|
//! less than k, or a.end() if such an element is not found.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic
|
|
const_iterator lower_bound(const key_type& x) const
|
|
{ return m_flat_tree.lower_bound(x); }
|
|
|
|
//! <b>Returns</b>: An iterator pointing to the first element with key not less
|
|
//! than x, or end() if such an element is not found.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic
|
|
iterator upper_bound(const key_type& x)
|
|
{ return m_flat_tree.upper_bound(x); }
|
|
|
|
//! <b>Returns</b>: A const iterator pointing to the first element with key not
|
|
//! less than x, or end() if such an element is not found.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic
|
|
const_iterator upper_bound(const key_type& x) const
|
|
{ return m_flat_tree.upper_bound(x); }
|
|
|
|
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic
|
|
std::pair<const_iterator, const_iterator>
|
|
equal_range(const key_type& x) const
|
|
{ return m_flat_tree.equal_range(x); }
|
|
|
|
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic
|
|
std::pair<iterator,iterator>
|
|
equal_range(const key_type& x)
|
|
{ return m_flat_tree.equal_range(x); }
|
|
|
|
//! <b>Effects</b>: Number of elements for which memory has been allocated.
|
|
//! capacity() is always greater than or equal to size().
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
size_type capacity() const
|
|
{ return m_flat_tree.capacity(); }
|
|
|
|
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
|
|
//! effect. Otherwise, it is a request for allocation of additional memory.
|
|
//! If the request is successful, then capacity() is greater than or equal to
|
|
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
|
|
//!
|
|
//! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
|
|
//!
|
|
//! <b>Note</b>: If capacity() is less than "count", iterators and references to
|
|
//! to values might be invalidated.
|
|
void reserve(size_type count)
|
|
{ m_flat_tree.reserve(count); }
|
|
|
|
/// @cond
|
|
template <class K1, class C1, class A1>
|
|
friend bool operator== (const flat_set<K1,C1,A1>&, const flat_set<K1,C1,A1>&);
|
|
|
|
template <class K1, class C1, class A1>
|
|
friend bool operator< (const flat_set<K1,C1,A1>&, const flat_set<K1,C1,A1>&);
|
|
/// @endcond
|
|
};
|
|
|
|
template <class T, class Pred, class Alloc>
|
|
inline bool operator==(const flat_set<T,Pred,Alloc>& x,
|
|
const flat_set<T,Pred,Alloc>& y)
|
|
{ return x.m_flat_tree == y.m_flat_tree; }
|
|
|
|
template <class T, class Pred, class Alloc>
|
|
inline bool operator<(const flat_set<T,Pred,Alloc>& x,
|
|
const flat_set<T,Pred,Alloc>& y)
|
|
{ return x.m_flat_tree < y.m_flat_tree; }
|
|
|
|
template <class T, class Pred, class Alloc>
|
|
inline bool operator!=(const flat_set<T,Pred,Alloc>& x,
|
|
const flat_set<T,Pred,Alloc>& y)
|
|
{ return !(x == y); }
|
|
|
|
template <class T, class Pred, class Alloc>
|
|
inline bool operator>(const flat_set<T,Pred,Alloc>& x,
|
|
const flat_set<T,Pred,Alloc>& y)
|
|
{ return y < x; }
|
|
|
|
template <class T, class Pred, class Alloc>
|
|
inline bool operator<=(const flat_set<T,Pred,Alloc>& x,
|
|
const flat_set<T,Pred,Alloc>& y)
|
|
{ return !(y < x); }
|
|
|
|
template <class T, class Pred, class Alloc>
|
|
inline bool operator>=(const flat_set<T,Pred,Alloc>& x,
|
|
const flat_set<T,Pred,Alloc>& y)
|
|
{ return !(x < y); }
|
|
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
template <class T, class Pred, class Alloc>
|
|
inline void swap(flat_set<T,Pred,Alloc>& x,
|
|
flat_set<T,Pred,Alloc>& y)
|
|
{ x.swap(y); }
|
|
|
|
template <class T, class Pred, class Alloc>
|
|
inline void swap(const detail::moved_object<flat_set<T,Pred,Alloc> >& x,
|
|
flat_set<T,Pred,Alloc>& y)
|
|
{ x.get().swap(y); }
|
|
|
|
template <class T, class Pred, class Alloc>
|
|
inline void swap(flat_set<T,Pred,Alloc>& x,
|
|
const detail::moved_object<flat_set<T,Pred,Alloc> >& y)
|
|
{ x.swap(y.get()); }
|
|
#else
|
|
template <class T, class Pred, class Alloc>
|
|
inline void swap(flat_set<T,Pred,Alloc>&&x,
|
|
flat_set<T,Pred,Alloc>&&y)
|
|
{ x.swap(y); }
|
|
#endif
|
|
|
|
/// @cond
|
|
|
|
//!This class is movable
|
|
template <class T, class P, class A>
|
|
struct is_movable<flat_set<T, P, A> >
|
|
{
|
|
enum { value = true };
|
|
};
|
|
|
|
//!has_trivial_destructor_after_move<> == true_type
|
|
//!specialization for optimizations
|
|
template <class T, class C, class A>
|
|
struct has_trivial_destructor_after_move<flat_set<T, C, A> >
|
|
{
|
|
enum { value =
|
|
has_trivial_destructor<A>::value &&
|
|
has_trivial_destructor<C>::value };
|
|
};
|
|
|
|
// Forward declaration of operators < and ==, needed for friend declaration.
|
|
|
|
template <class T, class Pred, class Alloc>
|
|
class flat_multiset;
|
|
|
|
template <class T, class Pred, class Alloc>
|
|
inline bool operator==(const flat_multiset<T,Pred,Alloc>& x,
|
|
const flat_multiset<T,Pred,Alloc>& y);
|
|
|
|
template <class T, class Pred, class Alloc>
|
|
inline bool operator<(const flat_multiset<T,Pred,Alloc>& x,
|
|
const flat_multiset<T,Pred,Alloc>& y);
|
|
/// @endcond
|
|
|
|
//! flat_multiset is a Sorted Associative Container that stores objects of type Key.
|
|
//! flat_multiset is a Simple Associative Container, meaning that its value type,
|
|
//! as well as its key type, is Key.
|
|
//! flat_Multiset can store multiple copies of the same key value.
|
|
//!
|
|
//! flat_multiset is similar to std::multiset but it's implemented like an ordered vector.
|
|
//! This means that inserting a new element into a flat_multiset invalidates
|
|
//! previous iterators and references
|
|
//!
|
|
//! Erasing an element of a flat_multiset invalidates iterators and references
|
|
//! pointing to elements that come after (their keys are equal or bigger) the erased element.
|
|
template <class T, class Pred, class Alloc>
|
|
class flat_multiset
|
|
{
|
|
/// @cond
|
|
private:
|
|
typedef detail::flat_tree<T, T, detail::identity<T>, Pred, Alloc> tree_t;
|
|
tree_t m_flat_tree; // flat tree representing flat_multiset
|
|
/// @endcond
|
|
|
|
public:
|
|
// typedefs:
|
|
typedef typename tree_t::key_type key_type;
|
|
typedef typename tree_t::value_type value_type;
|
|
typedef typename tree_t::pointer pointer;
|
|
typedef typename tree_t::const_pointer const_pointer;
|
|
typedef typename tree_t::reference reference;
|
|
typedef typename tree_t::const_reference const_reference;
|
|
typedef typename tree_t::key_compare key_compare;
|
|
typedef typename tree_t::value_compare value_compare;
|
|
typedef typename tree_t::iterator iterator;
|
|
typedef typename tree_t::const_iterator const_iterator;
|
|
typedef typename tree_t::reverse_iterator reverse_iterator;
|
|
typedef typename tree_t::const_reverse_iterator const_reverse_iterator;
|
|
typedef typename tree_t::size_type size_type;
|
|
typedef typename tree_t::difference_type difference_type;
|
|
typedef typename tree_t::allocator_type allocator_type;
|
|
typedef typename tree_t::stored_allocator_type stored_allocator_type;
|
|
|
|
// allocation/deallocation
|
|
explicit flat_multiset(const Pred& comp = Pred(),
|
|
const allocator_type& a = allocator_type())
|
|
: m_flat_tree(comp, a) {}
|
|
|
|
template <class InputIterator>
|
|
flat_multiset(InputIterator first, InputIterator last,
|
|
const Pred& comp = Pred(),
|
|
const allocator_type& a = allocator_type())
|
|
: m_flat_tree(comp, a)
|
|
{ m_flat_tree.insert_equal(first, last); }
|
|
|
|
flat_multiset(const flat_multiset<T,Pred,Alloc>& x)
|
|
: m_flat_tree(x.m_flat_tree) {}
|
|
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
flat_multiset(const detail::moved_object<flat_multiset<T,Pred,Alloc> >& x)
|
|
: m_flat_tree(detail::move_impl(x.get().m_flat_tree)) {}
|
|
#else
|
|
flat_multiset(flat_multiset<T,Pred,Alloc> && x)
|
|
: m_flat_tree(detail::move_impl(x.m_flat_tree)) {}
|
|
#endif
|
|
|
|
flat_multiset<T,Pred,Alloc>& operator=(const flat_multiset<T,Pred,Alloc>& x)
|
|
{ m_flat_tree = x.m_flat_tree; return *this; }
|
|
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
flat_multiset<T,Pred,Alloc>& operator=(const detail::moved_object<flat_multiset<T,Pred,Alloc> >& mx)
|
|
{ m_flat_tree = detail::move_impl(mx.get().m_flat_tree); return *this; }
|
|
#else
|
|
flat_multiset<T,Pred,Alloc>& operator=(flat_multiset<T,Pred,Alloc> && mx)
|
|
{ m_flat_tree = detail::move_impl(mx.m_flat_tree); return *this; }
|
|
#endif
|
|
|
|
//! <b>Effects</b>: Returns the comparison object out
|
|
//! of which a was constructed.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
key_compare key_comp() const
|
|
{ return m_flat_tree.key_comp(); }
|
|
|
|
//! <b>Effects</b>: Returns an object of value_compare constructed out
|
|
//! of the comparison object.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
value_compare value_comp() const
|
|
{ return m_flat_tree.key_comp(); }
|
|
|
|
//! <b>Effects</b>: Returns a copy of the Allocator that
|
|
//! was passed to the object's constructor.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
allocator_type get_allocator() const
|
|
{ return m_flat_tree.get_allocator(); }
|
|
|
|
const stored_allocator_type &get_stored_allocator() const
|
|
{ return m_flat_tree.get_stored_allocator(); }
|
|
|
|
stored_allocator_type &get_stored_allocator()
|
|
{ return m_flat_tree.get_stored_allocator(); }
|
|
|
|
//! <b>Effects</b>: Returns an iterator to the first element contained in the container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
iterator begin()
|
|
{ return m_flat_tree.begin(); }
|
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
const_iterator begin() const
|
|
{ return m_flat_tree.begin(); }
|
|
|
|
//! <b>Effects</b>: Returns an iterator to the end of the container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
iterator end()
|
|
{ return m_flat_tree.end(); }
|
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
const_iterator end() const
|
|
{ return m_flat_tree.end(); }
|
|
|
|
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
|
|
//! of the reversed container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
reverse_iterator rbegin()
|
|
{ return m_flat_tree.rbegin(); }
|
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
|
|
//! of the reversed container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
const_reverse_iterator rbegin() const
|
|
{ return m_flat_tree.rbegin(); }
|
|
|
|
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
|
|
//! of the reversed container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
reverse_iterator rend()
|
|
{ return m_flat_tree.rend(); }
|
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
|
|
//! of the reversed container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
const_reverse_iterator rend() const
|
|
{ return m_flat_tree.rend(); }
|
|
|
|
//! <b>Effects</b>: Returns true if the container contains no elements.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
bool empty() const
|
|
{ return m_flat_tree.empty(); }
|
|
|
|
//! <b>Effects</b>: Returns the number of the elements contained in the container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
size_type size() const
|
|
{ return m_flat_tree.size(); }
|
|
|
|
//! <b>Effects</b>: Returns the largest possible size of the container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
size_type max_size() const
|
|
{ return m_flat_tree.max_size(); }
|
|
|
|
//! <b>Effects</b>: Swaps the contents of *this and x.
|
|
//! If this->allocator_type() != x.allocator_type() allocators are also swapped.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
void swap(flat_multiset<T,Pred,Alloc>& x)
|
|
{ m_flat_tree.swap(x.m_flat_tree); }
|
|
|
|
//! <b>Effects</b>: Swaps the contents of *this and x.
|
|
//! If this->allocator_type() != x.allocator_type() allocators are also swapped.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
void swap(const detail::moved_object<flat_multiset<T,Pred,Alloc> >& mx)
|
|
{ this->swap(mx.get()); }
|
|
#else
|
|
void swap(flat_multiset<T,Pred,Alloc> && mx)
|
|
{ this->swap(mx); }
|
|
#endif
|
|
|
|
//! <b>Effects</b>: Inserts x and returns the iterator pointing to the
|
|
//! newly inserted element.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
|
|
//! to the elements with bigger keys than x.
|
|
//!
|
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
|
|
iterator insert(const value_type& x)
|
|
{ return m_flat_tree.insert_equal(x); }
|
|
|
|
//! <b>Effects</b>: Inserts a new value_type move constructed from x
|
|
//! and returns the iterator pointing to the newly inserted element.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
|
|
//! to the elements with bigger keys than x.
|
|
//!
|
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
iterator insert(const detail::moved_object<value_type>& x)
|
|
{ return m_flat_tree.insert_equal(x); }
|
|
#else
|
|
iterator insert(value_type && x)
|
|
{ return m_flat_tree.insert_equal(detail::move_impl(x)); }
|
|
#endif
|
|
|
|
//! <b>Effects</b>: Inserts a copy of x in the container.
|
|
//! p is a hint pointing to where the insert should start to search.
|
|
//!
|
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
|
|
//! to the key of x.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
|
|
//! right before p) plus insertion linear to the elements with bigger keys than x.
|
|
//!
|
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
|
|
iterator insert(iterator position, const value_type& x)
|
|
{ return m_flat_tree.insert_equal(position, x); }
|
|
|
|
//! <b>Effects</b>: Inserts a new value move constructed from x in the container.
|
|
//! p is a hint pointing to where the insert should start to search.
|
|
//!
|
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
|
|
//! to the key of x.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
|
|
//! right before p) plus insertion linear to the elements with bigger keys than x.
|
|
//!
|
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
iterator insert(iterator position, const detail::moved_object<value_type>& x)
|
|
{ return m_flat_tree.insert_equal(position, x); }
|
|
#else
|
|
iterator insert(iterator position, value_type && x)
|
|
{ return m_flat_tree.insert_equal(position, detail::move_impl(x)); }
|
|
#endif
|
|
|
|
//! <b>Requires</b>: i, j are not iterators into *this.
|
|
//!
|
|
//! <b>Effects</b>: inserts each element from the range [i,j) .
|
|
//!
|
|
//! <b>Complexity</b>: N log(size()+N) (N is the distance from i to j)
|
|
//! search time plus N*size() insertion time.
|
|
//!
|
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
|
|
template <class InputIterator>
|
|
void insert(InputIterator first, InputIterator last)
|
|
{ m_flat_tree.insert_equal(first, last); }
|
|
|
|
//! <b>Effects</b>: Erases the element pointed to by position.
|
|
//!
|
|
//! <b>Returns</b>: Returns an iterator pointing to the element immediately
|
|
//! following q prior to the element being erased. If no such element exists,
|
|
//! returns end().
|
|
//!
|
|
//! <b>Complexity</b>: Linear to the elements with keys bigger than position
|
|
//!
|
|
//! <b>Note</b>: Invalidates elements with keys
|
|
//! not less than the erased element.
|
|
iterator erase(const_iterator position)
|
|
{ return m_flat_tree.erase(position); }
|
|
|
|
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
|
|
//!
|
|
//! <b>Returns</b>: Returns the number of erased elements.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic search time plus erasure time
|
|
//! linear to the elements with bigger keys.
|
|
size_type erase(const key_type& x)
|
|
{ return m_flat_tree.erase(x); }
|
|
|
|
//! <b>Effects</b>: Erases all the elements in the range [first, last).
|
|
//!
|
|
//! <b>Returns</b>: Returns last.
|
|
//!
|
|
//! <b>Complexity</b>: size()*N where N is the distance from first to last.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic search time plus erasure time
|
|
//! linear to the elements with bigger keys.
|
|
iterator erase(const_iterator first, const_iterator last)
|
|
{ return m_flat_tree.erase(first, last); }
|
|
|
|
//! <b>Effects</b>: erase(a.begin(),a.end()).
|
|
//!
|
|
//! <b>Postcondition</b>: size() == 0.
|
|
//!
|
|
//! <b>Complexity</b>: linear in size().
|
|
void clear()
|
|
{ m_flat_tree.clear(); }
|
|
|
|
//! <b>Effects</b>: Tries to deallocate the excess of memory created
|
|
// with previous allocations. The size of the vector is unchanged
|
|
//!
|
|
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
|
|
//!
|
|
//! <b>Complexity</b>: Linear to size().
|
|
void shrink_to_fit()
|
|
{ m_flat_tree.shrink_to_fit(); }
|
|
|
|
//! <b>Returns</b>: An iterator pointing to an element with the key
|
|
//! equivalent to x, or end() if such an element is not found.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic.
|
|
iterator find(const key_type& x)
|
|
{ return m_flat_tree.find(x); }
|
|
|
|
//! <b>Returns</b>: A const_iterator pointing to an element with the key
|
|
//! equivalent to x, or end() if such an element is not found.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic.s
|
|
const_iterator find(const key_type& x) const
|
|
{ return m_flat_tree.find(x); }
|
|
|
|
//! <b>Returns</b>: The number of elements with key equivalent to x.
|
|
//!
|
|
//! <b>Complexity</b>: log(size())+count(k)
|
|
size_type count(const key_type& x) const
|
|
{ return m_flat_tree.count(x); }
|
|
|
|
//! <b>Returns</b>: An iterator pointing to the first element with key not less
|
|
//! than k, or a.end() if such an element is not found.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic
|
|
iterator lower_bound(const key_type& x)
|
|
{ return m_flat_tree.lower_bound(x); }
|
|
|
|
//! <b>Returns</b>: A const iterator pointing to the first element with key not
|
|
//! less than k, or a.end() if such an element is not found.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic
|
|
const_iterator lower_bound(const key_type& x) const
|
|
{ return m_flat_tree.lower_bound(x); }
|
|
|
|
//! <b>Returns</b>: An iterator pointing to the first element with key not less
|
|
//! than x, or end() if such an element is not found.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic
|
|
iterator upper_bound(const key_type& x)
|
|
{ return m_flat_tree.upper_bound(x); }
|
|
|
|
//! <b>Returns</b>: A const iterator pointing to the first element with key not
|
|
//! less than x, or end() if such an element is not found.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic
|
|
const_iterator upper_bound(const key_type& x) const
|
|
{ return m_flat_tree.upper_bound(x); }
|
|
|
|
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic
|
|
std::pair<const_iterator, const_iterator>
|
|
equal_range(const key_type& x) const
|
|
{ return m_flat_tree.equal_range(x); }
|
|
|
|
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic
|
|
std::pair<iterator,iterator>
|
|
equal_range(const key_type& x)
|
|
{ return m_flat_tree.equal_range(x); }
|
|
|
|
//! <b>Effects</b>: Number of elements for which memory has been allocated.
|
|
//! capacity() is always greater than or equal to size().
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
size_type capacity() const
|
|
{ return m_flat_tree.capacity(); }
|
|
|
|
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
|
|
//! effect. Otherwise, it is a request for allocation of additional memory.
|
|
//! If the request is successful, then capacity() is greater than or equal to
|
|
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
|
|
//!
|
|
//! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
|
|
//!
|
|
//! <b>Note</b>: If capacity() is less than "count", iterators and references to
|
|
//! to values might be invalidated.
|
|
void reserve(size_type count)
|
|
{ m_flat_tree.reserve(count); }
|
|
|
|
/// @cond
|
|
template <class K1, class C1, class A1>
|
|
friend bool operator== (const flat_multiset<K1,C1,A1>&,
|
|
const flat_multiset<K1,C1,A1>&);
|
|
template <class K1, class C1, class A1>
|
|
friend bool operator< (const flat_multiset<K1,C1,A1>&,
|
|
const flat_multiset<K1,C1,A1>&);
|
|
/// @endcond
|
|
};
|
|
|
|
template <class T, class Pred, class Alloc>
|
|
inline bool operator==(const flat_multiset<T,Pred,Alloc>& x,
|
|
const flat_multiset<T,Pred,Alloc>& y)
|
|
{ return x.m_flat_tree == y.m_flat_tree; }
|
|
|
|
template <class T, class Pred, class Alloc>
|
|
inline bool operator<(const flat_multiset<T,Pred,Alloc>& x,
|
|
const flat_multiset<T,Pred,Alloc>& y)
|
|
{ return x.m_flat_tree < y.m_flat_tree; }
|
|
|
|
template <class T, class Pred, class Alloc>
|
|
inline bool operator!=(const flat_multiset<T,Pred,Alloc>& x,
|
|
const flat_multiset<T,Pred,Alloc>& y)
|
|
{ return !(x == y); }
|
|
|
|
template <class T, class Pred, class Alloc>
|
|
inline bool operator>(const flat_multiset<T,Pred,Alloc>& x,
|
|
const flat_multiset<T,Pred,Alloc>& y)
|
|
{ return y < x; }
|
|
|
|
template <class T, class Pred, class Alloc>
|
|
inline bool operator<=(const flat_multiset<T,Pred,Alloc>& x,
|
|
const flat_multiset<T,Pred,Alloc>& y)
|
|
{ return !(y < x); }
|
|
|
|
template <class T, class Pred, class Alloc>
|
|
inline bool operator>=(const flat_multiset<T,Pred,Alloc>& x,
|
|
const flat_multiset<T,Pred,Alloc>& y)
|
|
{ return !(x < y); }
|
|
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
template <class T, class Pred, class Alloc>
|
|
inline void swap(flat_multiset<T,Pred,Alloc>& x,
|
|
flat_multiset<T,Pred,Alloc>& y)
|
|
{ x.swap(y); }
|
|
|
|
template <class T, class Pred, class Alloc>
|
|
inline void swap(const detail::moved_object<flat_multiset<T,Pred,Alloc> >& x,
|
|
flat_multiset<T,Pred,Alloc>& y)
|
|
{ x.get().swap(y); }
|
|
|
|
template <class T, class Pred, class Alloc>
|
|
inline void swap(flat_multiset<T,Pred,Alloc>& x,
|
|
const detail::moved_object<flat_multiset<T,Pred,Alloc> >& y)
|
|
{ x.swap(y.get()); }
|
|
#else
|
|
template <class T, class Pred, class Alloc>
|
|
inline void swap(flat_multiset<T,Pred,Alloc>&&x,
|
|
flat_multiset<T,Pred,Alloc>&&y)
|
|
{ x.swap(y); }
|
|
#endif
|
|
|
|
/// @cond
|
|
|
|
//!This class is movable
|
|
template <class T, class P, class A>
|
|
struct is_movable<flat_multiset<T, P, A> >
|
|
{
|
|
enum { value = true };
|
|
};
|
|
|
|
//!has_trivial_destructor_after_move<> == true_type
|
|
//!specialization for optimizations
|
|
template <class T, class C, class A>
|
|
struct has_trivial_destructor_after_move<flat_multiset<T, C, A> >
|
|
{
|
|
enum { value =
|
|
has_trivial_destructor<A>::value &&
|
|
has_trivial_destructor<C>::value };
|
|
};
|
|
/// @endcond
|
|
|
|
}} //namespace boost { namespace interprocess {
|
|
|
|
#include <boost/interprocess/detail/config_end.hpp>
|
|
|
|
#endif /* BOOST_INTERPROCESS_FLAT_SET_HPP */
|