1285 lines
52 KiB
C++
Executable File
1285 lines
52 KiB
C++
Executable File
//////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// (C) Copyright Ion Gaztanaga 2005-2008. Distributed under the Boost
|
|
// Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
//
|
|
// See http://www.boost.org/libs/interprocess for documentation.
|
|
//
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef BOOST_INTERPROCESS_FLAT_MAP_HPP
|
|
#define BOOST_INTERPROCESS_FLAT_MAP_HPP
|
|
|
|
#if (defined _MSC_VER) && (_MSC_VER >= 1200)
|
|
# pragma once
|
|
#endif
|
|
|
|
#include <boost/interprocess/detail/config_begin.hpp>
|
|
#include <boost/interprocess/detail/workaround.hpp>
|
|
|
|
#include <boost/interprocess/interprocess_fwd.hpp>
|
|
#include <utility>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <boost/interprocess/containers/detail/flat_tree.hpp>
|
|
#include <boost/interprocess/detail/utilities.hpp>
|
|
#include <boost/type_traits/has_trivial_destructor.hpp>
|
|
#include <boost/interprocess/detail/mpl.hpp>
|
|
#include <boost/interprocess/detail/move.hpp>
|
|
|
|
namespace boost { namespace interprocess {
|
|
|
|
/// @cond
|
|
// Forward declarations of operators == and <, needed for friend declarations.
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
class flat_map;
|
|
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
inline bool operator==(const flat_map<Key,T,Pred,Alloc>& x,
|
|
const flat_map<Key,T,Pred,Alloc>& y);
|
|
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
inline bool operator<(const flat_map<Key,T,Pred,Alloc>& x,
|
|
const flat_map<Key,T,Pred,Alloc>& y);
|
|
/// @endcond
|
|
|
|
//! A flat_map is a kind of associative container that supports unique keys (contains at
|
|
//! most one of each key value) and provides for fast retrieval of values of another
|
|
//! type T based on the keys. The flat_map class supports random-access iterators.
|
|
//!
|
|
//! A flat_map satisfies all of the requirements of a container and of a reversible
|
|
//! container and of an associative container. A flat_map also provides
|
|
//! most operations described for unique keys. For a
|
|
//! flat_map<Key,T> the key_type is Key and the value_type is std::pair<Key,T>
|
|
//! (unlike std::map<Key, T> which value_type is std::pair<<b>const</b> Key, T>).
|
|
//!
|
|
//! Pred is the ordering function for Keys (e.g. <i>std::less<Key></i>).
|
|
//!
|
|
//! Alloc is the allocator to allocate the value_types
|
|
//! (e.g. <i>boost::interprocess:allocator< std::pair<Key, T></i>).
|
|
//!
|
|
//! flat_map is similar to std::map but it's implemented like an ordered vector.
|
|
//! This means that inserting a new element into a flat_map invalidates
|
|
//! previous iterators and references
|
|
//!
|
|
//! Erasing an element of a flat_map invalidates iterators and references
|
|
//! pointing to elements that come after (their keys are bigger) the erased element.
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
class flat_map
|
|
{
|
|
/// @cond
|
|
private:
|
|
//This is the tree that we should store if pair was movable
|
|
typedef detail::flat_tree<Key,
|
|
std::pair<Key, T>,
|
|
detail::select1st< std::pair<Key, T> >,
|
|
Pred,
|
|
Alloc> tree_t;
|
|
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
//This is the real tree stored here. It's based on a movable pair
|
|
typedef detail::flat_tree<Key,
|
|
detail::pair<Key, T>,
|
|
detail::select1st< detail::pair<Key, T> >,
|
|
Pred,
|
|
typename Alloc::template
|
|
rebind<detail::pair<Key, T> >::other> impl_tree_t;
|
|
#else
|
|
typedef tree_t impl_tree_t;
|
|
#endif
|
|
|
|
impl_tree_t m_flat_tree; // flat tree representing flat_map
|
|
|
|
typedef typename impl_tree_t::value_type impl_value_type;
|
|
typedef typename impl_tree_t::pointer impl_pointer;
|
|
typedef typename impl_tree_t::const_pointer impl_const_pointer;
|
|
typedef typename impl_tree_t::reference impl_reference;
|
|
typedef typename impl_tree_t::const_reference impl_const_reference;
|
|
typedef typename impl_tree_t::value_compare impl_value_compare;
|
|
typedef typename impl_tree_t::iterator impl_iterator;
|
|
typedef typename impl_tree_t::const_iterator impl_const_iterator;
|
|
typedef typename impl_tree_t::reverse_iterator impl_reverse_iterator;
|
|
typedef typename impl_tree_t::const_reverse_iterator impl_const_reverse_iterator;
|
|
typedef typename impl_tree_t::allocator_type impl_allocator_type;
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
typedef detail::moved_object<impl_value_type> impl_moved_value_type;
|
|
#endif
|
|
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
template<class D, class S>
|
|
static D &force(const S &s)
|
|
{ return *((D*)(void*)(const void*)(&s)); }
|
|
#else
|
|
//For rvalue-aware compilers, just forward
|
|
template<class Type>
|
|
static const Type &force(const Type &t)
|
|
{ return t; }
|
|
|
|
template<class Type>
|
|
static Type &force(Type &t)
|
|
{ return t; }
|
|
#endif
|
|
|
|
/// @endcond
|
|
|
|
public:
|
|
// typedefs:
|
|
typedef typename tree_t::key_type key_type;
|
|
typedef typename tree_t::value_type value_type;
|
|
typedef typename tree_t::pointer pointer;
|
|
typedef typename tree_t::const_pointer const_pointer;
|
|
typedef typename tree_t::reference reference;
|
|
typedef typename tree_t::const_reference const_reference;
|
|
typedef typename tree_t::value_compare value_compare;
|
|
typedef T mapped_type;
|
|
typedef typename tree_t::key_compare key_compare;
|
|
typedef typename tree_t::iterator iterator;
|
|
typedef typename tree_t::const_iterator const_iterator;
|
|
typedef typename tree_t::reverse_iterator reverse_iterator;
|
|
typedef typename tree_t::const_reverse_iterator const_reverse_iterator;
|
|
typedef typename tree_t::size_type size_type;
|
|
typedef typename tree_t::difference_type difference_type;
|
|
typedef typename tree_t::allocator_type allocator_type;
|
|
typedef typename tree_t::stored_allocator_type stored_allocator_type;
|
|
|
|
//! <b>Effects</b>: Constructs an empty flat_map using the specified
|
|
//! comparison object and allocator.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
explicit flat_map(const Pred& comp = Pred(), const allocator_type& a = allocator_type())
|
|
: m_flat_tree(comp, force<impl_allocator_type>(a)) {}
|
|
|
|
//! <b>Effects</b>: Constructs an empty flat_map using the specified comparison object and
|
|
//! allocator, and inserts elements from the range [first ,last ).
|
|
//!
|
|
//! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
|
|
//! comp and otherwise N logN, where N is last - first.
|
|
template <class InputIterator>
|
|
flat_map(InputIterator first, InputIterator last, const Pred& comp = Pred(),
|
|
const allocator_type& a = allocator_type())
|
|
: m_flat_tree(comp, force<impl_allocator_type>(a))
|
|
{ m_flat_tree.insert_unique(first, last); }
|
|
|
|
//! <b>Effects</b>: Copy constructs a flat_map.
|
|
//!
|
|
//! <b>Complexity</b>: Linear in x.size().
|
|
flat_map(const flat_map<Key,T,Pred,Alloc>& x)
|
|
: m_flat_tree(x.m_flat_tree) {}
|
|
|
|
//! <b>Effects</b>: Move constructs a flat_map.
|
|
//! Constructs *this using x's resources.
|
|
//!
|
|
//! <b>Complexity</b>: Construct.
|
|
//!
|
|
//! <b>Postcondition</b>: x is emptied.
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
flat_map(const detail::moved_object<flat_map<Key,T,Pred,Alloc> >& x)
|
|
: m_flat_tree(detail::move_impl(x.get().m_flat_tree)) {}
|
|
|
|
#else
|
|
flat_map(flat_map<Key,T,Pred,Alloc> && x)
|
|
: m_flat_tree(detail::move_impl(x.m_flat_tree)) {}
|
|
#endif
|
|
|
|
//! <b>Effects</b>: Makes *this a copy of x.
|
|
//!
|
|
//! <b>Complexity</b>: Linear in x.size().
|
|
flat_map<Key,T,Pred,Alloc>& operator=(const flat_map<Key, T, Pred, Alloc>& x)
|
|
{ m_flat_tree = x.m_flat_tree; return *this; }
|
|
|
|
//! <b>Effects</b>: Move constructs a flat_map.
|
|
//! Constructs *this using x's resources.
|
|
//!
|
|
//! <b>Complexity</b>: Construct.
|
|
//!
|
|
//! <b>Postcondition</b>: x is emptied.
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
flat_map<Key,T,Pred,Alloc>& operator=(const detail::moved_object<flat_map<Key, T, Pred, Alloc> >& mx)
|
|
{ m_flat_tree = detail::move_impl(mx.get().m_flat_tree); return *this; }
|
|
#else
|
|
flat_map<Key,T,Pred,Alloc>& operator=(flat_map<Key, T, Pred, Alloc> && mx)
|
|
{ m_flat_tree = detail::move_impl(mx.m_flat_tree); return *this; }
|
|
#endif
|
|
|
|
//! <b>Effects</b>: Returns the comparison object out
|
|
//! of which a was constructed.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
key_compare key_comp() const
|
|
{ return force<key_compare>(m_flat_tree.key_comp()); }
|
|
|
|
//! <b>Effects</b>: Returns an object of value_compare constructed out
|
|
//! of the comparison object.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
value_compare value_comp() const
|
|
{ return value_compare(force<key_compare>(m_flat_tree.key_comp())); }
|
|
|
|
//! <b>Effects</b>: Returns a copy of the Allocator that
|
|
//! was passed to the object's constructor.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
allocator_type get_allocator() const
|
|
{ return force<allocator_type>(m_flat_tree.get_allocator()); }
|
|
|
|
const stored_allocator_type &get_stored_allocator() const
|
|
{ return force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); }
|
|
|
|
stored_allocator_type &get_stored_allocator()
|
|
{ return force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); }
|
|
|
|
//! <b>Effects</b>: Returns an iterator to the first element contained in the container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
iterator begin()
|
|
{ return force<iterator>(m_flat_tree.begin()); }
|
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
const_iterator begin() const
|
|
{ return force<const_iterator>(m_flat_tree.begin()); }
|
|
|
|
//! <b>Effects</b>: Returns an iterator to the end of the container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
iterator end()
|
|
{ return force<iterator>(m_flat_tree.end()); }
|
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
const_iterator end() const
|
|
{ return force<const_iterator>(m_flat_tree.end()); }
|
|
|
|
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
|
|
//! of the reversed container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
reverse_iterator rbegin()
|
|
{ return force<reverse_iterator>(m_flat_tree.rbegin()); }
|
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
|
|
//! of the reversed container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
const_reverse_iterator rbegin() const
|
|
{ return force<const_reverse_iterator>(m_flat_tree.rbegin()); }
|
|
|
|
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
|
|
//! of the reversed container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
reverse_iterator rend()
|
|
{ return force<reverse_iterator>(m_flat_tree.rend()); }
|
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
|
|
//! of the reversed container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
const_reverse_iterator rend() const
|
|
{ return force<const_reverse_iterator>(m_flat_tree.rend()); }
|
|
|
|
//! <b>Effects</b>: Returns true if the container contains no elements.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
bool empty() const
|
|
{ return m_flat_tree.empty(); }
|
|
|
|
//! <b>Effects</b>: Returns the number of the elements contained in the container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
size_type size() const
|
|
{ return m_flat_tree.size(); }
|
|
|
|
//! <b>Effects</b>: Returns the largest possible size of the container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
size_type max_size() const
|
|
{ return m_flat_tree.max_size(); }
|
|
|
|
//! Effects: If there is no key equivalent to x in the flat_map, inserts
|
|
//! value_type(detail::move_impl(x), T()) into the flat_map (the key is move-constructed)
|
|
//!
|
|
//! Returns: A reference to the mapped_type corresponding to x in *this.
|
|
//!
|
|
//! Complexity: Logarithmic.
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
//! Effects: If there is no key equivalent to x in the flat_map, inserts
|
|
//! value_type(x, T()) into the flat_map.
|
|
//!
|
|
//! Returns: A reference to the mapped_type corresponding to x in *this.
|
|
//!
|
|
//! Complexity: Logarithmic.
|
|
T &operator[](const key_type& k)
|
|
{
|
|
iterator i = lower_bound(k);
|
|
// i->first is greater than or equivalent to k.
|
|
if (i == end() || key_comp()(k, (*i).first))
|
|
i = insert(i, value_type(k, T()));
|
|
return (*i).second;
|
|
}
|
|
|
|
T &operator[](const detail::moved_object<key_type>& mk)
|
|
{
|
|
key_type &k = mk.get();
|
|
iterator i = lower_bound(k);
|
|
// i->first is greater than or equivalent to k.
|
|
if (i == end() || key_comp()(k, (*i).first))
|
|
i = insert(i, value_type(k, detail::move_impl(T())));
|
|
return (*i).second;
|
|
}
|
|
#else
|
|
//! Effects: If there is no key equivalent to x in the flat_map, inserts
|
|
//! value_type(x, T()) into the flat_map.
|
|
//!
|
|
//! Returns: A reference to the mapped_type corresponding to x in *this.
|
|
//!
|
|
//! Complexity: Logarithmic.
|
|
T &operator[](key_type &&mk)
|
|
{
|
|
key_type &k = mk;
|
|
iterator i = lower_bound(k);
|
|
// i->first is greater than or equivalent to k.
|
|
if (i == end() || key_comp()(k, (*i).first))
|
|
i = insert(i, value_type(detail::forward_impl<key_type>(k), detail::move_impl(T())));
|
|
return (*i).second;
|
|
}
|
|
#endif
|
|
|
|
//! <b>Effects</b>: Swaps the contents of *this and x.
|
|
//! If this->allocator_type() != x.allocator_type() allocators are also swapped.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
void swap(flat_map<Key,T,Pred,Alloc>& x)
|
|
{ m_flat_tree.swap(x.m_flat_tree); }
|
|
|
|
//! <b>Effects</b>: Swaps the contents of *this and x.
|
|
//! If this->allocator_type() != x.allocator_type() allocators are also swapped.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
void swap(const detail::moved_object<flat_map<Key,T,Pred,Alloc> >& x)
|
|
{ m_flat_tree.swap(x.get().m_flat_tree); }
|
|
#else
|
|
void swap(flat_map<Key,T,Pred,Alloc> && x)
|
|
{ m_flat_tree.swap(x.m_flat_tree); }
|
|
#endif
|
|
|
|
//! <b>Effects</b>: Inserts x if and only if there is no element in the container
|
|
//! with key equivalent to the key of x.
|
|
//!
|
|
//! <b>Returns</b>: The bool component of the returned pair is true if and only
|
|
//! if the insertion takes place, and the iterator component of the pair
|
|
//! points to the element with key equivalent to the key of x.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
|
|
//! to the elements with bigger keys than x.
|
|
//!
|
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
|
|
std::pair<iterator,bool> insert(const value_type& x)
|
|
{ return force<std::pair<iterator,bool> >(
|
|
m_flat_tree.insert_unique(force<impl_value_type>(x))); }
|
|
|
|
//! <b>Effects</b>: Inserts a new value_type move constructed from the pair if and
|
|
//! only if there is no element in the container with key equivalent to the key of x.
|
|
//!
|
|
//! <b>Returns</b>: The bool component of the returned pair is true if and only
|
|
//! if the insertion takes place, and the iterator component of the pair
|
|
//! points to the element with key equivalent to the key of x.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
|
|
//! to the elements with bigger keys than x.
|
|
//!
|
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
std::pair<iterator,bool> insert(const detail::moved_object<value_type>& x)
|
|
{ return force<std::pair<iterator,bool> >(
|
|
m_flat_tree.insert_unique(force<impl_moved_value_type>(x))); }
|
|
#else
|
|
std::pair<iterator,bool> insert(value_type &&x)
|
|
{ return m_flat_tree.insert_unique(detail::move_impl(x)); }
|
|
#endif
|
|
|
|
//! <b>Effects</b>: Inserts a copy of x in the container if and only if there is
|
|
//! no element in the container with key equivalent to the key of x.
|
|
//! p is a hint pointing to where the insert should start to search.
|
|
//!
|
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
|
|
//! to the key of x.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
|
|
//! right before p) plus insertion linear to the elements with bigger keys than x.
|
|
//!
|
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
|
|
iterator insert(iterator position, const value_type& x)
|
|
{ return force<iterator>(
|
|
m_flat_tree.insert_unique(force<impl_iterator>(position), force<impl_value_type>(x))); }
|
|
|
|
//! <b>Effects</b>: Inserts an element move constructed from x in the container.
|
|
//! p is a hint pointing to where the insert should start to search.
|
|
//!
|
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent to the key of x.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic search time (constant if x is inserted
|
|
//! right before p) plus insertion linear to the elements with bigger keys than x.
|
|
//!
|
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
iterator insert(iterator position, const detail::moved_object<value_type>& x)
|
|
{ return force<iterator>(
|
|
m_flat_tree.insert_unique(force<impl_iterator>(position), force<impl_moved_value_type>(x))); }
|
|
#else
|
|
iterator insert(iterator position, value_type &&x)
|
|
{ return m_flat_tree.insert_unique(position, detail::move_impl(x)); }
|
|
#endif
|
|
|
|
//! <b>Requires</b>: i, j are not iterators into *this.
|
|
//!
|
|
//! <b>Effects</b>: inserts each element from the range [i,j) if and only
|
|
//! if there is no element with key equivalent to the key of that element.
|
|
//!
|
|
//! <b>Complexity</b>: N log(size()+N) (N is the distance from i to j)
|
|
//! search time plus N*size() insertion time.
|
|
//!
|
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
|
|
template <class InputIterator>
|
|
void insert(InputIterator first, InputIterator last)
|
|
{ m_flat_tree.insert_unique(first, last); }
|
|
|
|
//! <b>Effects</b>: Erases the element pointed to by position.
|
|
//!
|
|
//! <b>Returns</b>: Returns an iterator pointing to the element immediately
|
|
//! following q prior to the element being erased. If no such element exists,
|
|
//! returns end().
|
|
//!
|
|
//! <b>Complexity</b>: Linear to the elements with keys bigger than position
|
|
//!
|
|
//! <b>Note</b>: Invalidates elements with keys
|
|
//! not less than the erased element.
|
|
iterator erase(const_iterator position)
|
|
{ return force<iterator>(m_flat_tree.erase(force<impl_const_iterator>(position))); }
|
|
|
|
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
|
|
//!
|
|
//! <b>Returns</b>: Returns the number of erased elements.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic search time plus erasure time
|
|
//! linear to the elements with bigger keys.
|
|
size_type erase(const key_type& x)
|
|
{ return m_flat_tree.erase(x); }
|
|
|
|
//! <b>Effects</b>: Erases all the elements in the range [first, last).
|
|
//!
|
|
//! <b>Returns</b>: Returns last.
|
|
//!
|
|
//! <b>Complexity</b>: size()*N where N is the distance from first to last.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic search time plus erasure time
|
|
//! linear to the elements with bigger keys.
|
|
iterator erase(const_iterator first, const_iterator last)
|
|
{ return force<iterator>(m_flat_tree.erase(force<impl_const_iterator>(first), force<impl_const_iterator>(last))); }
|
|
|
|
//! <b>Effects</b>: erase(a.begin(),a.end()).
|
|
//!
|
|
//! <b>Postcondition</b>: size() == 0.
|
|
//!
|
|
//! <b>Complexity</b>: linear in size().
|
|
void clear()
|
|
{ m_flat_tree.clear(); }
|
|
|
|
//! <b>Effects</b>: Tries to deallocate the excess of memory created
|
|
// with previous allocations. The size of the vector is unchanged
|
|
//!
|
|
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
|
|
//!
|
|
//! <b>Complexity</b>: Linear to size().
|
|
void shrink_to_fit()
|
|
{ m_flat_tree.shrink_to_fit(); }
|
|
|
|
//! <b>Returns</b>: An iterator pointing to an element with the key
|
|
//! equivalent to x, or end() if such an element is not found.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic.
|
|
iterator find(const key_type& x)
|
|
{ return force<iterator>(m_flat_tree.find(x)); }
|
|
|
|
//! <b>Returns</b>: A const_iterator pointing to an element with the key
|
|
//! equivalent to x, or end() if such an element is not found.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic.s
|
|
const_iterator find(const key_type& x) const
|
|
{ return force<const_iterator>(m_flat_tree.find(x)); }
|
|
|
|
//! <b>Returns</b>: The number of elements with key equivalent to x.
|
|
//!
|
|
//! <b>Complexity</b>: log(size())+count(k)
|
|
size_type count(const key_type& x) const
|
|
{ return m_flat_tree.find(x) == m_flat_tree.end() ? 0 : 1; }
|
|
|
|
//! <b>Returns</b>: An iterator pointing to the first element with key not less
|
|
//! than k, or a.end() if such an element is not found.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic
|
|
iterator lower_bound(const key_type& x)
|
|
{ return force<iterator>(m_flat_tree.lower_bound(x)); }
|
|
|
|
//! <b>Returns</b>: A const iterator pointing to the first element with key not
|
|
//! less than k, or a.end() if such an element is not found.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic
|
|
const_iterator lower_bound(const key_type& x) const
|
|
{ return force<const_iterator>(m_flat_tree.lower_bound(x)); }
|
|
|
|
//! <b>Returns</b>: An iterator pointing to the first element with key not less
|
|
//! than x, or end() if such an element is not found.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic
|
|
iterator upper_bound(const key_type& x)
|
|
{ return force<iterator>(m_flat_tree.upper_bound(x)); }
|
|
|
|
//! <b>Returns</b>: A const iterator pointing to the first element with key not
|
|
//! less than x, or end() if such an element is not found.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic
|
|
const_iterator upper_bound(const key_type& x) const
|
|
{ return force<const_iterator>(m_flat_tree.upper_bound(x)); }
|
|
|
|
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic
|
|
std::pair<iterator,iterator> equal_range(const key_type& x)
|
|
{ return force<std::pair<iterator,iterator> >(m_flat_tree.equal_range(x)); }
|
|
|
|
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic
|
|
std::pair<const_iterator,const_iterator> equal_range(const key_type& x) const
|
|
{ return force<std::pair<const_iterator,const_iterator> >(m_flat_tree.equal_range(x)); }
|
|
|
|
//! <b>Effects</b>: Number of elements for which memory has been allocated.
|
|
//! capacity() is always greater than or equal to size().
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
size_type capacity() const
|
|
{ return m_flat_tree.capacity(); }
|
|
|
|
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
|
|
//! effect. Otherwise, it is a request for allocation of additional memory.
|
|
//! If the request is successful, then capacity() is greater than or equal to
|
|
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
|
|
//!
|
|
//! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
|
|
//!
|
|
//! <b>Note</b>: If capacity() is less than "count", iterators and references to
|
|
//! to values might be invalidated.
|
|
void reserve(size_type count)
|
|
{ m_flat_tree.reserve(count); }
|
|
|
|
/// @cond
|
|
template <class K1, class T1, class C1, class A1>
|
|
friend bool operator== (const flat_map<K1, T1, C1, A1>&,
|
|
const flat_map<K1, T1, C1, A1>&);
|
|
template <class K1, class T1, class C1, class A1>
|
|
friend bool operator< (const flat_map<K1, T1, C1, A1>&,
|
|
const flat_map<K1, T1, C1, A1>&);
|
|
/// @endcond
|
|
};
|
|
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
inline bool operator==(const flat_map<Key,T,Pred,Alloc>& x,
|
|
const flat_map<Key,T,Pred,Alloc>& y)
|
|
{ return x.m_flat_tree == y.m_flat_tree; }
|
|
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
inline bool operator<(const flat_map<Key,T,Pred,Alloc>& x,
|
|
const flat_map<Key,T,Pred,Alloc>& y)
|
|
{ return x.m_flat_tree < y.m_flat_tree; }
|
|
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
inline bool operator!=(const flat_map<Key,T,Pred,Alloc>& x,
|
|
const flat_map<Key,T,Pred,Alloc>& y)
|
|
{ return !(x == y); }
|
|
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
inline bool operator>(const flat_map<Key,T,Pred,Alloc>& x,
|
|
const flat_map<Key,T,Pred,Alloc>& y)
|
|
{ return y < x; }
|
|
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
inline bool operator<=(const flat_map<Key,T,Pred,Alloc>& x,
|
|
const flat_map<Key,T,Pred,Alloc>& y)
|
|
{ return !(y < x); }
|
|
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
inline bool operator>=(const flat_map<Key,T,Pred,Alloc>& x,
|
|
const flat_map<Key,T,Pred,Alloc>& y)
|
|
{ return !(x < y); }
|
|
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
inline void swap(flat_map<Key,T,Pred,Alloc>& x,
|
|
flat_map<Key,T,Pred,Alloc>& y)
|
|
{ x.swap(y); }
|
|
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
inline void swap(const detail::moved_object<flat_map<Key,T,Pred,Alloc> >& x,
|
|
flat_map<Key,T,Pred,Alloc>& y)
|
|
{ x.get().swap(y); }
|
|
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
inline void swap(flat_map<Key,T,Pred,Alloc>& x,
|
|
const detail::moved_object<flat_map<Key,T,Pred,Alloc> >& y)
|
|
{ x.swap(y.get()); }
|
|
#else
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
inline void swap(flat_map<Key,T,Pred,Alloc>&&x,
|
|
flat_map<Key,T,Pred,Alloc>&&y)
|
|
{ x.swap(y); }
|
|
#endif
|
|
|
|
/// @cond
|
|
|
|
//!This class is movable
|
|
template <class K, class T, class C, class A>
|
|
struct is_movable<flat_map<K, T, C, A> >
|
|
{
|
|
enum { value = true };
|
|
};
|
|
|
|
//!has_trivial_destructor_after_move<> == true_type
|
|
//!specialization for optimizations
|
|
template <class K, class T, class C, class A>
|
|
struct has_trivial_destructor_after_move<flat_map<K, T, C, A> >
|
|
{
|
|
enum { value =
|
|
has_trivial_destructor<A>::value &&
|
|
has_trivial_destructor<C>::value };
|
|
};
|
|
|
|
// Forward declaration of operators < and ==, needed for friend declaration.
|
|
template <class Key, class T,
|
|
class Pred,
|
|
class Alloc>
|
|
class flat_multimap;
|
|
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
inline bool operator==(const flat_multimap<Key,T,Pred,Alloc>& x,
|
|
const flat_multimap<Key,T,Pred,Alloc>& y);
|
|
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
inline bool operator<(const flat_multimap<Key,T,Pred,Alloc>& x,
|
|
const flat_multimap<Key,T,Pred,Alloc>& y);
|
|
/// @endcond
|
|
|
|
//! A flat_multimap is a kind of associative container that supports equivalent keys
|
|
//! (possibly containing multiple copies of the same key value) and provides for
|
|
//! fast retrieval of values of another type T based on the keys. The flat_multimap
|
|
//! class supports random-access iterators.
|
|
//!
|
|
//! A flat_multimap satisfies all of the requirements of a container and of a reversible
|
|
//! container and of an associative container. For a
|
|
//! flat_multimap<Key,T> the key_type is Key and the value_type is std::pair<Key,T>
|
|
//! (unlike std::multimap<Key, T> which value_type is std::pair<<b>const</b> Key, T>).
|
|
//!
|
|
//! Pred is the ordering function for Keys (e.g. <i>std::less<Key></i>).
|
|
//!
|
|
//! Alloc is the allocator to allocate the value_types
|
|
//! (e.g. <i>boost::interprocess:allocator< std::pair<Key, T></i>).
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
class flat_multimap
|
|
{
|
|
/// @cond
|
|
private:
|
|
typedef detail::flat_tree<Key,
|
|
std::pair<Key, T>,
|
|
detail::select1st< std::pair<Key, T> >,
|
|
Pred,
|
|
Alloc> tree_t;
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
//This is the real tree stored here. It's based on a movable pair
|
|
typedef detail::flat_tree<Key,
|
|
detail::pair<Key, T>,
|
|
detail::select1st< detail::pair<Key, T> >,
|
|
Pred,
|
|
typename Alloc::template
|
|
rebind<detail::pair<Key, T> >::other> impl_tree_t;
|
|
#else
|
|
typedef tree_t impl_tree_t;
|
|
#endif
|
|
|
|
impl_tree_t m_flat_tree; // flat tree representing flat_map
|
|
|
|
typedef typename impl_tree_t::value_type impl_value_type;
|
|
typedef typename impl_tree_t::pointer impl_pointer;
|
|
typedef typename impl_tree_t::const_pointer impl_const_pointer;
|
|
typedef typename impl_tree_t::reference impl_reference;
|
|
typedef typename impl_tree_t::const_reference impl_const_reference;
|
|
typedef typename impl_tree_t::value_compare impl_value_compare;
|
|
typedef typename impl_tree_t::iterator impl_iterator;
|
|
typedef typename impl_tree_t::const_iterator impl_const_iterator;
|
|
typedef typename impl_tree_t::reverse_iterator impl_reverse_iterator;
|
|
typedef typename impl_tree_t::const_reverse_iterator impl_const_reverse_iterator;
|
|
typedef typename impl_tree_t::allocator_type impl_allocator_type;
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
typedef detail::moved_object<impl_value_type> impl_moved_value_type;
|
|
#endif
|
|
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
template<class D, class S>
|
|
static D &force(const S &s)
|
|
{ return *const_cast<D*>((reinterpret_cast<const D*>(&s))); }
|
|
#else
|
|
//For rvalue-aware compilers, just forward
|
|
template<class Type>
|
|
static const Type &force(const Type &t)
|
|
{ return t; }
|
|
|
|
template<class Type>
|
|
static Type &force(Type &t)
|
|
{ return t; }
|
|
#endif
|
|
/// @endcond
|
|
|
|
public:
|
|
// typedefs:
|
|
typedef typename tree_t::key_type key_type;
|
|
typedef typename tree_t::value_type value_type;
|
|
typedef typename tree_t::pointer pointer;
|
|
typedef typename tree_t::const_pointer const_pointer;
|
|
typedef typename tree_t::reference reference;
|
|
typedef typename tree_t::const_reference const_reference;
|
|
typedef typename tree_t::value_compare value_compare;
|
|
typedef T mapped_type;
|
|
typedef typename tree_t::key_compare key_compare;
|
|
typedef typename tree_t::iterator iterator;
|
|
typedef typename tree_t::const_iterator const_iterator;
|
|
typedef typename tree_t::reverse_iterator reverse_iterator;
|
|
typedef typename tree_t::const_reverse_iterator const_reverse_iterator;
|
|
typedef typename tree_t::size_type size_type;
|
|
typedef typename tree_t::difference_type difference_type;
|
|
typedef typename tree_t::allocator_type allocator_type;
|
|
typedef typename tree_t::stored_allocator_type stored_allocator_type;
|
|
|
|
//! <b>Effects</b>: Constructs an empty flat_multimap using the specified comparison
|
|
//! object and allocator.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
explicit flat_multimap(const Pred& comp = Pred(),
|
|
const allocator_type& a = allocator_type())
|
|
: m_flat_tree(comp, force<impl_allocator_type>(a)) { }
|
|
|
|
//! <b>Effects</b>: Constructs an empty flat_multimap using the specified comparison object
|
|
//! and allocator, and inserts elements from the range [first ,last ).
|
|
//!
|
|
//! <b>Complexity</b>: Linear in N if the range [first ,last ) is already sorted using
|
|
//! comp and otherwise N logN, where N is last - first.
|
|
template <class InputIterator>
|
|
flat_multimap(InputIterator first, InputIterator last,
|
|
const Pred& comp = Pred(),
|
|
const allocator_type& a = allocator_type())
|
|
: m_flat_tree(comp, force<impl_allocator_type>(a))
|
|
{ m_flat_tree.insert_equal(first, last); }
|
|
|
|
//! <b>Effects</b>: Copy constructs a flat_multimap.
|
|
//!
|
|
//! <b>Complexity</b>: Linear in x.size().
|
|
flat_multimap(const flat_multimap<Key,T,Pred,Alloc>& x)
|
|
: m_flat_tree(x.m_flat_tree) { }
|
|
|
|
//! <b>Effects</b>: Move constructs a flat_multimap. Constructs *this using x's resources.
|
|
//!
|
|
//! <b>Complexity</b>: Construct.
|
|
//!
|
|
//! <b>Postcondition</b>: x is emptied.
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
flat_multimap(const detail::moved_object<flat_multimap<Key,T,Pred,Alloc> >& x)
|
|
: m_flat_tree(detail::move_impl(x.get().m_flat_tree)) { }
|
|
#else
|
|
flat_multimap(flat_multimap<Key,T,Pred,Alloc> && x)
|
|
: m_flat_tree(detail::move_impl(x.m_flat_tree)) { }
|
|
#endif
|
|
|
|
//! <b>Effects</b>: Makes *this a copy of x.
|
|
//!
|
|
//! <b>Complexity</b>: Linear in x.size().
|
|
flat_multimap<Key,T,Pred,Alloc>&
|
|
operator=(const flat_multimap<Key,T,Pred,Alloc>& x)
|
|
{ m_flat_tree = x.m_flat_tree; return *this; }
|
|
|
|
//! <b>Effects</b>: this->swap(x.get()).
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
flat_multimap<Key,T,Pred,Alloc>&
|
|
operator=(const detail::moved_object<flat_multimap<Key,T,Pred,Alloc> >& mx)
|
|
{ m_flat_tree = detail::move_impl(mx.get().m_flat_tree); return *this; }
|
|
#else
|
|
flat_multimap<Key,T,Pred,Alloc>&
|
|
operator=(flat_multimap<Key,T,Pred,Alloc> && mx)
|
|
{ m_flat_tree = detail::move_impl(mx.m_flat_tree); return *this; }
|
|
#endif
|
|
|
|
//! <b>Effects</b>: Returns the comparison object out
|
|
//! of which a was constructed.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
key_compare key_comp() const
|
|
{ return force<key_compare>(m_flat_tree.key_comp()); }
|
|
|
|
//! <b>Effects</b>: Returns an object of value_compare constructed out
|
|
//! of the comparison object.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
value_compare value_comp() const
|
|
{ return value_compare(force<key_compare>(m_flat_tree.key_comp())); }
|
|
|
|
//! <b>Effects</b>: Returns a copy of the Allocator that
|
|
//! was passed to the object's constructor.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
allocator_type get_allocator() const
|
|
{ return force<allocator_type>(m_flat_tree.get_allocator()); }
|
|
|
|
const stored_allocator_type &get_stored_allocator() const
|
|
{ return force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); }
|
|
|
|
stored_allocator_type &get_stored_allocator()
|
|
{ return force<stored_allocator_type>(m_flat_tree.get_stored_allocator()); }
|
|
|
|
//! <b>Effects</b>: Returns an iterator to the first element contained in the container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
iterator begin()
|
|
{ return force<iterator>(m_flat_tree.begin()); }
|
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
const_iterator begin() const
|
|
{ return force<const_iterator>(m_flat_tree.begin()); }
|
|
|
|
//! <b>Effects</b>: Returns an iterator to the end of the container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
iterator end()
|
|
{ return force<iterator>(m_flat_tree.end()); }
|
|
|
|
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
const_iterator end() const
|
|
{ return force<const_iterator>(m_flat_tree.end()); }
|
|
|
|
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
|
|
//! of the reversed container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
reverse_iterator rbegin()
|
|
{ return force<reverse_iterator>(m_flat_tree.rbegin()); }
|
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
|
|
//! of the reversed container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
const_reverse_iterator rbegin() const
|
|
{ return force<const_reverse_iterator>(m_flat_tree.rbegin()); }
|
|
|
|
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
|
|
//! of the reversed container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
reverse_iterator rend()
|
|
{ return force<reverse_iterator>(m_flat_tree.rend()); }
|
|
|
|
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
|
|
//! of the reversed container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
const_reverse_iterator rend() const
|
|
{ return force<const_reverse_iterator>(m_flat_tree.rend()); }
|
|
|
|
//! <b>Effects</b>: Returns true if the container contains no elements.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
bool empty() const
|
|
{ return m_flat_tree.empty(); }
|
|
|
|
//! <b>Effects</b>: Returns the number of the elements contained in the container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
size_type size() const
|
|
{ return m_flat_tree.size(); }
|
|
|
|
//! <b>Effects</b>: Returns the largest possible size of the container.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
size_type max_size() const
|
|
{ return m_flat_tree.max_size(); }
|
|
|
|
//! <b>Effects</b>: Swaps the contents of *this and x.
|
|
//! If this->allocator_type() != x.allocator_type() allocators are also swapped.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
void swap(flat_multimap<Key,T,Pred,Alloc>& x)
|
|
{ m_flat_tree.swap(x.m_flat_tree); }
|
|
|
|
//! <b>Effects</b>: Swaps the contents of *this and x.
|
|
//! If this->allocator_type() != x.allocator_type() allocators are also swapped.
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
void swap(const detail::moved_object<flat_multimap<Key,T,Pred,Alloc> >& x)
|
|
{ m_flat_tree.swap(x.get().m_flat_tree); }
|
|
#else
|
|
void swap(flat_multimap<Key,T,Pred,Alloc> && x)
|
|
{ m_flat_tree.swap(x.m_flat_tree); }
|
|
#endif
|
|
|
|
//! <b>Effects</b>: Inserts x and returns the iterator pointing to the
|
|
//! newly inserted element.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
|
|
//! to the elements with bigger keys than x.
|
|
//!
|
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
|
|
iterator insert(const value_type& x)
|
|
{ return force<iterator>(m_flat_tree.insert_equal(force<impl_value_type>(x))); }
|
|
|
|
//! <b>Effects</b>: Inserts a new value move-constructed from x and returns
|
|
//! the iterator pointing to the newly inserted element.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic search time plus linear insertion
|
|
//! to the elements with bigger keys than x.
|
|
//!
|
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
iterator insert(const detail::moved_object<value_type>& x)
|
|
{ return force<iterator>(m_flat_tree.insert_equal(force<impl_moved_value_type>(x))); }
|
|
#else
|
|
iterator insert(value_type &&x)
|
|
{ return m_flat_tree.insert_equal(detail::move_impl(x)); }
|
|
#endif
|
|
|
|
//! <b>Effects</b>: Inserts a copy of x in the container.
|
|
//! p is a hint pointing to where the insert should start to search.
|
|
//!
|
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
|
|
//! to the key of x.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic search time (constant time if the value
|
|
//! is to be inserted before p) plus linear insertion
|
|
//! to the elements with bigger keys than x.
|
|
//!
|
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
|
|
iterator insert(iterator position, const value_type& x)
|
|
{ return force<iterator>(m_flat_tree.insert_equal(force<impl_iterator>(position), force<impl_value_type>(x))); }
|
|
|
|
//! <b>Effects</b>: Inserts a value move constructed from x in the container.
|
|
//! p is a hint pointing to where the insert should start to search.
|
|
//!
|
|
//! <b>Returns</b>: An iterator pointing to the element with key equivalent
|
|
//! to the key of x.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic search time (constant time if the value
|
|
//! is to be inserted before p) plus linear insertion
|
|
//! to the elements with bigger keys than x.
|
|
//!
|
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
iterator insert(iterator position, const detail::moved_object<value_type>& x)
|
|
{ return force<iterator>(m_flat_tree.insert_equal(force<impl_iterator>(position), force<impl_moved_value_type>(x))); }
|
|
#else
|
|
iterator insert(iterator position, value_type &&x)
|
|
{ return m_flat_tree.insert_equal(force<impl_iterator>(position), detail::move_impl(x)); }
|
|
#endif
|
|
|
|
//! <b>Requires</b>: i, j are not iterators into *this.
|
|
//!
|
|
//! <b>Effects</b>: inserts each element from the range [i,j) .
|
|
//!
|
|
//! <b>Complexity</b>: N log(size()+N) (N is the distance from i to j)
|
|
//! search time plus N*size() insertion time.
|
|
//!
|
|
//! <b>Note</b>: If an element it's inserted it might invalidate elements.
|
|
template <class InputIterator>
|
|
void insert(InputIterator first, InputIterator last)
|
|
{ m_flat_tree.insert_equal(first, last); }
|
|
|
|
//! <b>Effects</b>: Erases the element pointed to by position.
|
|
//!
|
|
//! <b>Returns</b>: Returns an iterator pointing to the element immediately
|
|
//! following q prior to the element being erased. If no such element exists,
|
|
//! returns end().
|
|
//!
|
|
//! <b>Complexity</b>: Linear to the elements with keys bigger than position
|
|
//!
|
|
//! <b>Note</b>: Invalidates elements with keys
|
|
//! not less than the erased element.
|
|
iterator erase(const_iterator position)
|
|
{ return force<iterator>(m_flat_tree.erase(force<impl_const_iterator>(position))); }
|
|
|
|
//! <b>Effects</b>: Erases all elements in the container with key equivalent to x.
|
|
//!
|
|
//! <b>Returns</b>: Returns the number of erased elements.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic search time plus erasure time
|
|
//! linear to the elements with bigger keys.
|
|
size_type erase(const key_type& x)
|
|
{ return m_flat_tree.erase(x); }
|
|
|
|
//! <b>Effects</b>: Erases all the elements in the range [first, last).
|
|
//!
|
|
//! <b>Returns</b>: Returns last.
|
|
//!
|
|
//! <b>Complexity</b>: size()*N where N is the distance from first to last.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic search time plus erasure time
|
|
//! linear to the elements with bigger keys.
|
|
iterator erase(const_iterator first, const_iterator last)
|
|
{ return force<iterator>(m_flat_tree.erase(force<impl_const_iterator>(first), force<impl_const_iterator>(last))); }
|
|
|
|
//! <b>Effects</b>: erase(a.begin(),a.end()).
|
|
//!
|
|
//! <b>Postcondition</b>: size() == 0.
|
|
//!
|
|
//! <b>Complexity</b>: linear in size().
|
|
void clear()
|
|
{ m_flat_tree.clear(); }
|
|
|
|
//! <b>Effects</b>: Tries to deallocate the excess of memory created
|
|
// with previous allocations. The size of the vector is unchanged
|
|
//!
|
|
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
|
|
//!
|
|
//! <b>Complexity</b>: Linear to size().
|
|
void shrink_to_fit()
|
|
{ m_flat_tree.shrink_to_fit(); }
|
|
|
|
//! <b>Returns</b>: An iterator pointing to an element with the key
|
|
//! equivalent to x, or end() if such an element is not found.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic.
|
|
iterator find(const key_type& x)
|
|
{ return force<iterator>(m_flat_tree.find(x)); }
|
|
|
|
//! <b>Returns</b>: An const_iterator pointing to an element with the key
|
|
//! equivalent to x, or end() if such an element is not found.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic.
|
|
const_iterator find(const key_type& x) const
|
|
{ return force<const_iterator>(m_flat_tree.find(x)); }
|
|
|
|
//! <b>Returns</b>: The number of elements with key equivalent to x.
|
|
//!
|
|
//! <b>Complexity</b>: log(size())+count(k)
|
|
size_type count(const key_type& x) const
|
|
{ return m_flat_tree.count(x); }
|
|
|
|
//! <b>Returns</b>: An iterator pointing to the first element with key not less
|
|
//! than k, or a.end() if such an element is not found.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic
|
|
iterator lower_bound(const key_type& x)
|
|
{return force<iterator>(m_flat_tree.lower_bound(x)); }
|
|
|
|
//! <b>Returns</b>: A const iterator pointing to the first element with key
|
|
//! not less than k, or a.end() if such an element is not found.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic
|
|
const_iterator lower_bound(const key_type& x) const
|
|
{ return force<const_iterator>(m_flat_tree.lower_bound(x)); }
|
|
|
|
//! <b>Returns</b>: An iterator pointing to the first element with key not less
|
|
//! than x, or end() if such an element is not found.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic
|
|
iterator upper_bound(const key_type& x)
|
|
{return force<iterator>(m_flat_tree.upper_bound(x)); }
|
|
|
|
//! <b>Returns</b>: A const iterator pointing to the first element with key
|
|
//! not less than x, or end() if such an element is not found.
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic
|
|
const_iterator upper_bound(const key_type& x) const
|
|
{ return force<const_iterator>(m_flat_tree.upper_bound(x)); }
|
|
|
|
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic
|
|
std::pair<iterator,iterator> equal_range(const key_type& x)
|
|
{ return force<std::pair<iterator,iterator> >(m_flat_tree.equal_range(x)); }
|
|
|
|
//! <b>Effects</b>: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
|
|
//!
|
|
//! <b>Complexity</b>: Logarithmic
|
|
std::pair<const_iterator,const_iterator>
|
|
equal_range(const key_type& x) const
|
|
{ return force<std::pair<const_iterator,const_iterator> >(m_flat_tree.equal_range(x)); }
|
|
|
|
//! <b>Effects</b>: Number of elements for which memory has been allocated.
|
|
//! capacity() is always greater than or equal to size().
|
|
//!
|
|
//! <b>Throws</b>: Nothing.
|
|
//!
|
|
//! <b>Complexity</b>: Constant.
|
|
size_type capacity() const
|
|
{ return m_flat_tree.capacity(); }
|
|
|
|
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
|
|
//! effect. Otherwise, it is a request for allocation of additional memory.
|
|
//! If the request is successful, then capacity() is greater than or equal to
|
|
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
|
|
//!
|
|
//! <b>Throws</b>: If memory allocation allocation throws or T's copy constructor throws.
|
|
//!
|
|
//! <b>Note</b>: If capacity() is less than "count", iterators and references to
|
|
//! to values might be invalidated.
|
|
void reserve(size_type count)
|
|
{ m_flat_tree.reserve(count); }
|
|
|
|
/// @cond
|
|
template <class K1, class T1, class C1, class A1>
|
|
friend bool operator== (const flat_multimap<K1, T1, C1, A1>& x,
|
|
const flat_multimap<K1, T1, C1, A1>& y);
|
|
|
|
template <class K1, class T1, class C1, class A1>
|
|
friend bool operator< (const flat_multimap<K1, T1, C1, A1>& x,
|
|
const flat_multimap<K1, T1, C1, A1>& y);
|
|
/// @endcond
|
|
};
|
|
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
inline bool operator==(const flat_multimap<Key,T,Pred,Alloc>& x,
|
|
const flat_multimap<Key,T,Pred,Alloc>& y)
|
|
{ return x.m_flat_tree == y.m_flat_tree; }
|
|
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
inline bool operator<(const flat_multimap<Key,T,Pred,Alloc>& x,
|
|
const flat_multimap<Key,T,Pred,Alloc>& y)
|
|
{ return x.m_flat_tree < y.m_flat_tree; }
|
|
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
inline bool operator!=(const flat_multimap<Key,T,Pred,Alloc>& x,
|
|
const flat_multimap<Key,T,Pred,Alloc>& y)
|
|
{ return !(x == y); }
|
|
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
inline bool operator>(const flat_multimap<Key,T,Pred,Alloc>& x,
|
|
const flat_multimap<Key,T,Pred,Alloc>& y)
|
|
{ return y < x; }
|
|
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
inline bool operator<=(const flat_multimap<Key,T,Pred,Alloc>& x,
|
|
const flat_multimap<Key,T,Pred,Alloc>& y)
|
|
{ return !(y < x); }
|
|
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
inline bool operator>=(const flat_multimap<Key,T,Pred,Alloc>& x,
|
|
const flat_multimap<Key,T,Pred,Alloc>& y)
|
|
{ return !(x < y); }
|
|
|
|
#ifndef BOOST_INTERPROCESS_RVALUE_REFERENCE
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
inline void swap(flat_multimap<Key,T,Pred,Alloc>& x,
|
|
flat_multimap<Key,T,Pred,Alloc>& y)
|
|
{ x.swap(y); }
|
|
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
inline void swap(const detail::moved_object<flat_multimap<Key,T,Pred,Alloc> >& x,
|
|
flat_multimap<Key,T,Pred,Alloc>& y)
|
|
{ x.get().swap(y); }
|
|
|
|
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
inline void swap(flat_multimap<Key,T,Pred,Alloc>& x,
|
|
const detail::moved_object<flat_multimap<Key,T,Pred,Alloc> > & y)
|
|
{ x.swap(y.get()); }
|
|
#else
|
|
template <class Key, class T, class Pred, class Alloc>
|
|
inline void swap(flat_multimap<Key,T,Pred,Alloc>&&x,
|
|
flat_multimap<Key,T,Pred,Alloc>&&y)
|
|
{ x.swap(y); }
|
|
#endif
|
|
|
|
/// @cond
|
|
|
|
//!This class is movable
|
|
template <class K, class T, class C, class A>
|
|
struct is_movable<flat_multimap<K, T, C, A> >
|
|
{
|
|
enum { value = true };
|
|
};
|
|
|
|
//!has_trivial_destructor_after_move<> == true_type
|
|
//!specialization for optimizations
|
|
template <class K, class T, class C, class A>
|
|
struct has_trivial_destructor_after_move<flat_multimap<K, T, C, A> >
|
|
{
|
|
enum { value =
|
|
has_trivial_destructor<A>::value &&
|
|
has_trivial_destructor<C>::value };
|
|
};
|
|
/// @endcond
|
|
|
|
}} //namespace boost { namespace interprocess {
|
|
|
|
#include <boost/interprocess/detail/config_end.hpp>
|
|
|
|
#endif /* BOOST_INTERPROCESS_FLAT_MAP_HPP */
|