728 lines
27 KiB
C++
Executable File
728 lines
27 KiB
C++
Executable File
//=======================================================================
|
|
// Copyright 2000 University of Notre Dame.
|
|
// Authors: Jeremy G. Siek, Andrew Lumsdaine, Lie-Quan Lee
|
|
//
|
|
// Distributed under the Boost Software License, Version 1.0. (See
|
|
// accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
//=======================================================================
|
|
|
|
#ifndef BOOST_PUSH_RELABEL_MAX_FLOW_HPP
|
|
#define BOOST_PUSH_RELABEL_MAX_FLOW_HPP
|
|
|
|
#include <boost/config.hpp>
|
|
#include <cassert>
|
|
#include <vector>
|
|
#include <list>
|
|
#include <iosfwd>
|
|
#include <algorithm> // for std::min and std::max
|
|
|
|
#include <boost/pending/queue.hpp>
|
|
#include <boost/limits.hpp>
|
|
#include <boost/graph/graph_concepts.hpp>
|
|
#include <boost/graph/named_function_params.hpp>
|
|
|
|
namespace boost {
|
|
|
|
namespace detail {
|
|
|
|
// This implementation is based on Goldberg's
|
|
// "On Implementing Push-Relabel Method for the Maximum Flow Problem"
|
|
// by B.V. Cherkassky and A.V. Goldberg, IPCO '95, pp. 157--171
|
|
// and on the h_prf.c and hi_pr.c code written by the above authors.
|
|
|
|
// This implements the highest-label version of the push-relabel method
|
|
// with the global relabeling and gap relabeling heuristics.
|
|
|
|
// The terms "rank", "distance", "height" are synonyms in
|
|
// Goldberg's implementation, paper and in the CLR. A "layer" is a
|
|
// group of vertices with the same distance. The vertices in each
|
|
// layer are categorized as active or inactive. An active vertex
|
|
// has positive excess flow and its distance is less than n (it is
|
|
// not blocked).
|
|
|
|
template <class Vertex>
|
|
struct preflow_layer {
|
|
std::list<Vertex> active_vertices;
|
|
std::list<Vertex> inactive_vertices;
|
|
};
|
|
|
|
template <class Graph,
|
|
class EdgeCapacityMap, // integer value type
|
|
class ResidualCapacityEdgeMap,
|
|
class ReverseEdgeMap,
|
|
class VertexIndexMap, // vertex_descriptor -> integer
|
|
class FlowValue>
|
|
class push_relabel
|
|
{
|
|
public:
|
|
typedef graph_traits<Graph> Traits;
|
|
typedef typename Traits::vertex_descriptor vertex_descriptor;
|
|
typedef typename Traits::edge_descriptor edge_descriptor;
|
|
typedef typename Traits::vertex_iterator vertex_iterator;
|
|
typedef typename Traits::out_edge_iterator out_edge_iterator;
|
|
typedef typename Traits::vertices_size_type vertices_size_type;
|
|
typedef typename Traits::edges_size_type edges_size_type;
|
|
|
|
typedef preflow_layer<vertex_descriptor> Layer;
|
|
typedef std::vector< Layer > LayerArray;
|
|
typedef typename LayerArray::iterator layer_iterator;
|
|
typedef typename LayerArray::size_type distance_size_type;
|
|
|
|
typedef color_traits<default_color_type> ColorTraits;
|
|
|
|
//=======================================================================
|
|
// Some helper predicates
|
|
|
|
inline bool is_admissible(vertex_descriptor u, vertex_descriptor v) {
|
|
return distance[u] == distance[v] + 1;
|
|
}
|
|
inline bool is_residual_edge(edge_descriptor a) {
|
|
return 0 < residual_capacity[a];
|
|
}
|
|
inline bool is_saturated(edge_descriptor a) {
|
|
return residual_capacity[a] == 0;
|
|
}
|
|
|
|
//=======================================================================
|
|
// Layer List Management Functions
|
|
|
|
typedef typename std::list<vertex_descriptor>::iterator list_iterator;
|
|
|
|
void add_to_active_list(vertex_descriptor u, Layer& layer) {
|
|
BOOST_USING_STD_MIN();
|
|
BOOST_USING_STD_MAX();
|
|
layer.active_vertices.push_front(u);
|
|
max_active = max BOOST_PREVENT_MACRO_SUBSTITUTION(distance[u], max_active);
|
|
min_active = min BOOST_PREVENT_MACRO_SUBSTITUTION(distance[u], min_active);
|
|
layer_list_ptr[u] = layer.active_vertices.begin();
|
|
}
|
|
void remove_from_active_list(vertex_descriptor u) {
|
|
layers[distance[u]].active_vertices.erase(layer_list_ptr[u]);
|
|
}
|
|
|
|
void add_to_inactive_list(vertex_descriptor u, Layer& layer) {
|
|
layer.inactive_vertices.push_front(u);
|
|
layer_list_ptr[u] = layer.inactive_vertices.begin();
|
|
}
|
|
void remove_from_inactive_list(vertex_descriptor u) {
|
|
layers[distance[u]].inactive_vertices.erase(layer_list_ptr[u]);
|
|
}
|
|
|
|
//=======================================================================
|
|
// initialization
|
|
push_relabel(Graph& g_,
|
|
EdgeCapacityMap cap,
|
|
ResidualCapacityEdgeMap res,
|
|
ReverseEdgeMap rev,
|
|
vertex_descriptor src_,
|
|
vertex_descriptor sink_,
|
|
VertexIndexMap idx)
|
|
: g(g_), n(num_vertices(g_)), capacity(cap), src(src_), sink(sink_),
|
|
index(idx),
|
|
excess_flow(num_vertices(g_)),
|
|
current(num_vertices(g_), out_edges(*vertices(g_).first, g_).second),
|
|
distance(num_vertices(g_)),
|
|
color(num_vertices(g_)),
|
|
reverse_edge(rev),
|
|
residual_capacity(res),
|
|
layers(num_vertices(g_)),
|
|
layer_list_ptr(num_vertices(g_),
|
|
layers.front().inactive_vertices.end()),
|
|
push_count(0), update_count(0), relabel_count(0),
|
|
gap_count(0), gap_node_count(0),
|
|
work_since_last_update(0)
|
|
{
|
|
vertex_iterator u_iter, u_end;
|
|
// Don't count the reverse edges
|
|
edges_size_type m = num_edges(g) / 2;
|
|
nm = alpha() * n + m;
|
|
|
|
// Initialize flow to zero which means initializing
|
|
// the residual capacity to equal the capacity.
|
|
out_edge_iterator ei, e_end;
|
|
for (tie(u_iter, u_end) = vertices(g); u_iter != u_end; ++u_iter)
|
|
for (tie(ei, e_end) = out_edges(*u_iter, g); ei != e_end; ++ei) {
|
|
residual_capacity[*ei] = capacity[*ei];
|
|
}
|
|
|
|
for (tie(u_iter, u_end) = vertices(g); u_iter != u_end; ++u_iter) {
|
|
vertex_descriptor u = *u_iter;
|
|
excess_flow[u] = 0;
|
|
current[u] = out_edges(u, g).first;
|
|
}
|
|
|
|
bool overflow_detected = false;
|
|
FlowValue test_excess = 0;
|
|
|
|
out_edge_iterator a_iter, a_end;
|
|
for (tie(a_iter, a_end) = out_edges(src, g); a_iter != a_end; ++a_iter)
|
|
if (target(*a_iter, g) != src)
|
|
test_excess += residual_capacity[*a_iter];
|
|
if (test_excess > (std::numeric_limits<FlowValue>::max)())
|
|
overflow_detected = true;
|
|
|
|
if (overflow_detected)
|
|
excess_flow[src] = (std::numeric_limits<FlowValue>::max)();
|
|
else {
|
|
excess_flow[src] = 0;
|
|
for (tie(a_iter, a_end) = out_edges(src, g);
|
|
a_iter != a_end; ++a_iter) {
|
|
edge_descriptor a = *a_iter;
|
|
if (target(a, g) != src) {
|
|
++push_count;
|
|
FlowValue delta = residual_capacity[a];
|
|
residual_capacity[a] -= delta;
|
|
residual_capacity[reverse_edge[a]] += delta;
|
|
excess_flow[target(a, g)] += delta;
|
|
}
|
|
}
|
|
}
|
|
max_distance = num_vertices(g) - 1;
|
|
max_active = 0;
|
|
min_active = n;
|
|
|
|
for (tie(u_iter, u_end) = vertices(g); u_iter != u_end; ++u_iter) {
|
|
vertex_descriptor u = *u_iter;
|
|
if (u == sink) {
|
|
distance[u] = 0;
|
|
continue;
|
|
} else if (u == src && !overflow_detected)
|
|
distance[u] = n;
|
|
else
|
|
distance[u] = 1;
|
|
|
|
if (excess_flow[u] > 0)
|
|
add_to_active_list(u, layers[1]);
|
|
else if (distance[u] < n)
|
|
add_to_inactive_list(u, layers[1]);
|
|
}
|
|
|
|
} // push_relabel constructor
|
|
|
|
//=======================================================================
|
|
// This is a breadth-first search over the residual graph
|
|
// (well, actually the reverse of the residual graph).
|
|
// Would be cool to have a graph view adaptor for hiding certain
|
|
// edges, like the saturated (non-residual) edges in this case.
|
|
// Goldberg's implementation abused "distance" for the coloring.
|
|
void global_distance_update()
|
|
{
|
|
BOOST_USING_STD_MAX();
|
|
++update_count;
|
|
vertex_iterator u_iter, u_end;
|
|
for (tie(u_iter,u_end) = vertices(g); u_iter != u_end; ++u_iter) {
|
|
color[*u_iter] = ColorTraits::white();
|
|
distance[*u_iter] = n;
|
|
}
|
|
color[sink] = ColorTraits::gray();
|
|
distance[sink] = 0;
|
|
|
|
for (distance_size_type l = 0; l <= max_distance; ++l) {
|
|
layers[l].active_vertices.clear();
|
|
layers[l].inactive_vertices.clear();
|
|
}
|
|
|
|
max_distance = max_active = 0;
|
|
min_active = n;
|
|
|
|
Q.push(sink);
|
|
while (! Q.empty()) {
|
|
vertex_descriptor u = Q.top();
|
|
Q.pop();
|
|
distance_size_type d_v = distance[u] + 1;
|
|
|
|
out_edge_iterator ai, a_end;
|
|
for (tie(ai, a_end) = out_edges(u, g); ai != a_end; ++ai) {
|
|
edge_descriptor a = *ai;
|
|
vertex_descriptor v = target(a, g);
|
|
if (color[v] == ColorTraits::white()
|
|
&& is_residual_edge(reverse_edge[a])) {
|
|
distance[v] = d_v;
|
|
color[v] = ColorTraits::gray();
|
|
current[v] = out_edges(v, g).first;
|
|
max_distance = max BOOST_PREVENT_MACRO_SUBSTITUTION(d_v, max_distance);
|
|
|
|
if (excess_flow[v] > 0)
|
|
add_to_active_list(v, layers[d_v]);
|
|
else
|
|
add_to_inactive_list(v, layers[d_v]);
|
|
|
|
Q.push(v);
|
|
}
|
|
}
|
|
}
|
|
} // global_distance_update()
|
|
|
|
//=======================================================================
|
|
// This function is called "push" in Goldberg's h_prf implementation,
|
|
// but it is called "discharge" in the paper and in hi_pr.c.
|
|
void discharge(vertex_descriptor u)
|
|
{
|
|
assert(excess_flow[u] > 0);
|
|
while (1) {
|
|
out_edge_iterator ai, ai_end;
|
|
for (ai = current[u], ai_end = out_edges(u, g).second;
|
|
ai != ai_end; ++ai) {
|
|
edge_descriptor a = *ai;
|
|
if (is_residual_edge(a)) {
|
|
vertex_descriptor v = target(a, g);
|
|
if (is_admissible(u, v)) {
|
|
++push_count;
|
|
if (v != sink && excess_flow[v] == 0) {
|
|
remove_from_inactive_list(v);
|
|
add_to_active_list(v, layers[distance[v]]);
|
|
}
|
|
push_flow(a);
|
|
if (excess_flow[u] == 0)
|
|
break;
|
|
}
|
|
}
|
|
} // for out_edges of i starting from current
|
|
|
|
Layer& layer = layers[distance[u]];
|
|
distance_size_type du = distance[u];
|
|
|
|
if (ai == ai_end) { // i must be relabeled
|
|
relabel_distance(u);
|
|
if (layer.active_vertices.empty()
|
|
&& layer.inactive_vertices.empty())
|
|
gap(du);
|
|
if (distance[u] == n)
|
|
break;
|
|
} else { // i is no longer active
|
|
current[u] = ai;
|
|
add_to_inactive_list(u, layer);
|
|
break;
|
|
}
|
|
} // while (1)
|
|
} // discharge()
|
|
|
|
//=======================================================================
|
|
// This corresponds to the "push" update operation of the paper,
|
|
// not the "push" function in Goldberg's h_prf.c implementation.
|
|
// The idea is to push the excess flow from from vertex u to v.
|
|
void push_flow(edge_descriptor u_v)
|
|
{
|
|
vertex_descriptor
|
|
u = source(u_v, g),
|
|
v = target(u_v, g);
|
|
|
|
BOOST_USING_STD_MIN();
|
|
FlowValue flow_delta
|
|
= min BOOST_PREVENT_MACRO_SUBSTITUTION(excess_flow[u], residual_capacity[u_v]);
|
|
|
|
residual_capacity[u_v] -= flow_delta;
|
|
residual_capacity[reverse_edge[u_v]] += flow_delta;
|
|
|
|
excess_flow[u] -= flow_delta;
|
|
excess_flow[v] += flow_delta;
|
|
} // push_flow()
|
|
|
|
//=======================================================================
|
|
// The main purpose of this routine is to set distance[v]
|
|
// to the smallest value allowed by the valid labeling constraints,
|
|
// which are:
|
|
// distance[t] = 0
|
|
// distance[u] <= distance[v] + 1 for every residual edge (u,v)
|
|
//
|
|
distance_size_type relabel_distance(vertex_descriptor u)
|
|
{
|
|
BOOST_USING_STD_MAX();
|
|
++relabel_count;
|
|
work_since_last_update += beta();
|
|
|
|
distance_size_type min_distance = num_vertices(g);
|
|
distance[u] = min_distance;
|
|
|
|
// Examine the residual out-edges of vertex i, choosing the
|
|
// edge whose target vertex has the minimal distance.
|
|
out_edge_iterator ai, a_end, min_edge_iter;
|
|
for (tie(ai, a_end) = out_edges(u, g); ai != a_end; ++ai) {
|
|
++work_since_last_update;
|
|
edge_descriptor a = *ai;
|
|
vertex_descriptor v = target(a, g);
|
|
if (is_residual_edge(a) && distance[v] < min_distance) {
|
|
min_distance = distance[v];
|
|
min_edge_iter = ai;
|
|
}
|
|
}
|
|
++min_distance;
|
|
if (min_distance < n) {
|
|
distance[u] = min_distance; // this is the main action
|
|
current[u] = min_edge_iter;
|
|
max_distance = max BOOST_PREVENT_MACRO_SUBSTITUTION(min_distance, max_distance);
|
|
}
|
|
return min_distance;
|
|
} // relabel_distance()
|
|
|
|
//=======================================================================
|
|
// cleanup beyond the gap
|
|
void gap(distance_size_type empty_distance)
|
|
{
|
|
++gap_count;
|
|
|
|
distance_size_type r; // distance of layer before the current layer
|
|
r = empty_distance - 1;
|
|
|
|
// Set the distance for the vertices beyond the gap to "infinity".
|
|
for (layer_iterator l = layers.begin() + empty_distance + 1;
|
|
l < layers.begin() + max_distance; ++l) {
|
|
list_iterator i;
|
|
for (i = l->inactive_vertices.begin();
|
|
i != l->inactive_vertices.end(); ++i) {
|
|
distance[*i] = n;
|
|
++gap_node_count;
|
|
}
|
|
l->inactive_vertices.clear();
|
|
}
|
|
max_distance = r;
|
|
max_active = r;
|
|
}
|
|
|
|
//=======================================================================
|
|
// This is the core part of the algorithm, "phase one".
|
|
FlowValue maximum_preflow()
|
|
{
|
|
work_since_last_update = 0;
|
|
|
|
while (max_active >= min_active) { // "main" loop
|
|
|
|
Layer& layer = layers[max_active];
|
|
list_iterator u_iter = layer.active_vertices.begin();
|
|
|
|
if (u_iter == layer.active_vertices.end())
|
|
--max_active;
|
|
else {
|
|
vertex_descriptor u = *u_iter;
|
|
remove_from_active_list(u);
|
|
|
|
discharge(u);
|
|
|
|
if (work_since_last_update * global_update_frequency() > nm) {
|
|
global_distance_update();
|
|
work_since_last_update = 0;
|
|
}
|
|
}
|
|
} // while (max_active >= min_active)
|
|
|
|
return excess_flow[sink];
|
|
} // maximum_preflow()
|
|
|
|
//=======================================================================
|
|
// remove excess flow, the "second phase"
|
|
// This does a DFS on the reverse flow graph of nodes with excess flow.
|
|
// If a cycle is found, cancel it.
|
|
// Return the nodes with excess flow in topological order.
|
|
//
|
|
// Unlike the prefl_to_flow() implementation, we use
|
|
// "color" instead of "distance" for the DFS labels
|
|
// "parent" instead of nl_prev for the DFS tree
|
|
// "topo_next" instead of nl_next for the topological ordering
|
|
void convert_preflow_to_flow()
|
|
{
|
|
vertex_iterator u_iter, u_end;
|
|
out_edge_iterator ai, a_end;
|
|
|
|
vertex_descriptor r, restart, u;
|
|
|
|
std::vector<vertex_descriptor> parent(n);
|
|
std::vector<vertex_descriptor> topo_next(n);
|
|
|
|
vertex_descriptor tos(parent[0]),
|
|
bos(parent[0]); // bogus initialization, just to avoid warning
|
|
bool bos_null = true;
|
|
|
|
// handle self-loops
|
|
for (tie(u_iter, u_end) = vertices(g); u_iter != u_end; ++u_iter)
|
|
for (tie(ai, a_end) = out_edges(*u_iter, g); ai != a_end; ++ai)
|
|
if (target(*ai, g) == *u_iter)
|
|
residual_capacity[*ai] = capacity[*ai];
|
|
|
|
// initialize
|
|
for (tie(u_iter, u_end) = vertices(g); u_iter != u_end; ++u_iter) {
|
|
u = *u_iter;
|
|
color[u] = ColorTraits::white();
|
|
parent[u] = u;
|
|
current[u] = out_edges(u, g).first;
|
|
}
|
|
// eliminate flow cycles and topologically order the vertices
|
|
for (tie(u_iter, u_end) = vertices(g); u_iter != u_end; ++u_iter) {
|
|
u = *u_iter;
|
|
if (color[u] == ColorTraits::white()
|
|
&& excess_flow[u] > 0
|
|
&& u != src && u != sink ) {
|
|
r = u;
|
|
color[r] = ColorTraits::gray();
|
|
while (1) {
|
|
for (; current[u] != out_edges(u, g).second; ++current[u]) {
|
|
edge_descriptor a = *current[u];
|
|
if (capacity[a] == 0 && is_residual_edge(a)) {
|
|
vertex_descriptor v = target(a, g);
|
|
if (color[v] == ColorTraits::white()) {
|
|
color[v] = ColorTraits::gray();
|
|
parent[v] = u;
|
|
u = v;
|
|
break;
|
|
} else if (color[v] == ColorTraits::gray()) {
|
|
// find minimum flow on the cycle
|
|
FlowValue delta = residual_capacity[a];
|
|
while (1) {
|
|
BOOST_USING_STD_MIN();
|
|
delta = min BOOST_PREVENT_MACRO_SUBSTITUTION(delta, residual_capacity[*current[v]]);
|
|
if (v == u)
|
|
break;
|
|
else
|
|
v = target(*current[v], g);
|
|
}
|
|
// remove delta flow units
|
|
v = u;
|
|
while (1) {
|
|
a = *current[v];
|
|
residual_capacity[a] -= delta;
|
|
residual_capacity[reverse_edge[a]] += delta;
|
|
v = target(a, g);
|
|
if (v == u)
|
|
break;
|
|
}
|
|
|
|
// back-out of DFS to the first saturated edge
|
|
restart = u;
|
|
for (v = target(*current[u], g); v != u; v = target(a, g)){
|
|
a = *current[v];
|
|
if (color[v] == ColorTraits::white()
|
|
|| is_saturated(a)) {
|
|
color[target(*current[v], g)] = ColorTraits::white();
|
|
if (color[v] != ColorTraits::white())
|
|
restart = v;
|
|
}
|
|
}
|
|
if (restart != u) {
|
|
u = restart;
|
|
++current[u];
|
|
break;
|
|
}
|
|
} // else if (color[v] == ColorTraits::gray())
|
|
} // if (capacity[a] == 0 ...
|
|
} // for out_edges(u, g) (though "u" changes during loop)
|
|
|
|
if (current[u] == out_edges(u, g).second) {
|
|
// scan of i is complete
|
|
color[u] = ColorTraits::black();
|
|
if (u != src) {
|
|
if (bos_null) {
|
|
bos = u;
|
|
bos_null = false;
|
|
tos = u;
|
|
} else {
|
|
topo_next[u] = tos;
|
|
tos = u;
|
|
}
|
|
}
|
|
if (u != r) {
|
|
u = parent[u];
|
|
++current[u];
|
|
} else
|
|
break;
|
|
}
|
|
} // while (1)
|
|
} // if (color[u] == white && excess_flow[u] > 0 & ...)
|
|
} // for all vertices in g
|
|
|
|
// return excess flows
|
|
// note that the sink is not on the stack
|
|
if (! bos_null) {
|
|
for (u = tos; u != bos; u = topo_next[u]) {
|
|
ai = out_edges(u, g).first;
|
|
while (excess_flow[u] > 0 && ai != out_edges(u, g).second) {
|
|
if (capacity[*ai] == 0 && is_residual_edge(*ai))
|
|
push_flow(*ai);
|
|
++ai;
|
|
}
|
|
}
|
|
// do the bottom
|
|
u = bos;
|
|
ai = out_edges(u, g).first;
|
|
while (excess_flow[u] > 0) {
|
|
if (capacity[*ai] == 0 && is_residual_edge(*ai))
|
|
push_flow(*ai);
|
|
++ai;
|
|
}
|
|
}
|
|
|
|
} // convert_preflow_to_flow()
|
|
|
|
//=======================================================================
|
|
inline bool is_flow()
|
|
{
|
|
vertex_iterator u_iter, u_end;
|
|
out_edge_iterator ai, a_end;
|
|
|
|
// check edge flow values
|
|
for (tie(u_iter, u_end) = vertices(g); u_iter != u_end; ++u_iter) {
|
|
for (tie(ai, a_end) = out_edges(*u_iter, g); ai != a_end; ++ai) {
|
|
edge_descriptor a = *ai;
|
|
if (capacity[a] > 0)
|
|
if ((residual_capacity[a] + residual_capacity[reverse_edge[a]]
|
|
!= capacity[a] + capacity[reverse_edge[a]])
|
|
|| (residual_capacity[a] < 0)
|
|
|| (residual_capacity[reverse_edge[a]] < 0))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// check conservation
|
|
FlowValue sum;
|
|
for (tie(u_iter, u_end) = vertices(g); u_iter != u_end; ++u_iter) {
|
|
vertex_descriptor u = *u_iter;
|
|
if (u != src && u != sink) {
|
|
if (excess_flow[u] != 0)
|
|
return false;
|
|
sum = 0;
|
|
for (tie(ai, a_end) = out_edges(u, g); ai != a_end; ++ai)
|
|
if (capacity[*ai] > 0)
|
|
sum -= capacity[*ai] - residual_capacity[*ai];
|
|
else
|
|
sum += residual_capacity[*ai];
|
|
|
|
if (excess_flow[u] != sum)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
} // is_flow()
|
|
|
|
bool is_optimal() {
|
|
// check if mincut is saturated...
|
|
global_distance_update();
|
|
return distance[src] >= n;
|
|
}
|
|
|
|
void print_statistics(std::ostream& os) const {
|
|
os << "pushes: " << push_count << std::endl
|
|
<< "relabels: " << relabel_count << std::endl
|
|
<< "updates: " << update_count << std::endl
|
|
<< "gaps: " << gap_count << std::endl
|
|
<< "gap nodes: " << gap_node_count << std::endl
|
|
<< std::endl;
|
|
}
|
|
|
|
void print_flow_values(std::ostream& os) const {
|
|
os << "flow values" << std::endl;
|
|
vertex_iterator u_iter, u_end;
|
|
out_edge_iterator ei, e_end;
|
|
for (tie(u_iter, u_end) = vertices(g); u_iter != u_end; ++u_iter)
|
|
for (tie(ei, e_end) = out_edges(*u_iter, g); ei != e_end; ++ei)
|
|
if (capacity[*ei] > 0)
|
|
os << *u_iter << " " << target(*ei, g) << " "
|
|
<< (capacity[*ei] - residual_capacity[*ei]) << std::endl;
|
|
os << std::endl;
|
|
}
|
|
|
|
//=======================================================================
|
|
|
|
Graph& g;
|
|
vertices_size_type n;
|
|
vertices_size_type nm;
|
|
EdgeCapacityMap capacity;
|
|
vertex_descriptor src;
|
|
vertex_descriptor sink;
|
|
VertexIndexMap index;
|
|
|
|
// will need to use random_access_property_map with these
|
|
std::vector< FlowValue > excess_flow;
|
|
std::vector< out_edge_iterator > current;
|
|
std::vector< distance_size_type > distance;
|
|
std::vector< default_color_type > color;
|
|
|
|
// Edge Property Maps that must be interior to the graph
|
|
ReverseEdgeMap reverse_edge;
|
|
ResidualCapacityEdgeMap residual_capacity;
|
|
|
|
LayerArray layers;
|
|
std::vector< list_iterator > layer_list_ptr;
|
|
distance_size_type max_distance; // maximal distance
|
|
distance_size_type max_active; // maximal distance with active node
|
|
distance_size_type min_active; // minimal distance with active node
|
|
boost::queue<vertex_descriptor> Q;
|
|
|
|
// Statistics counters
|
|
long push_count;
|
|
long update_count;
|
|
long relabel_count;
|
|
long gap_count;
|
|
long gap_node_count;
|
|
|
|
inline double global_update_frequency() { return 0.5; }
|
|
inline vertices_size_type alpha() { return 6; }
|
|
inline long beta() { return 12; }
|
|
|
|
long work_since_last_update;
|
|
};
|
|
|
|
} // namespace detail
|
|
|
|
template <class Graph,
|
|
class CapacityEdgeMap, class ResidualCapacityEdgeMap,
|
|
class ReverseEdgeMap, class VertexIndexMap>
|
|
typename property_traits<CapacityEdgeMap>::value_type
|
|
push_relabel_max_flow
|
|
(Graph& g,
|
|
typename graph_traits<Graph>::vertex_descriptor src,
|
|
typename graph_traits<Graph>::vertex_descriptor sink,
|
|
CapacityEdgeMap cap, ResidualCapacityEdgeMap res,
|
|
ReverseEdgeMap rev, VertexIndexMap index_map)
|
|
{
|
|
typedef typename property_traits<CapacityEdgeMap>::value_type FlowValue;
|
|
|
|
detail::push_relabel<Graph, CapacityEdgeMap, ResidualCapacityEdgeMap,
|
|
ReverseEdgeMap, VertexIndexMap, FlowValue>
|
|
algo(g, cap, res, rev, src, sink, index_map);
|
|
|
|
FlowValue flow = algo.maximum_preflow();
|
|
|
|
algo.convert_preflow_to_flow();
|
|
|
|
assert(algo.is_flow());
|
|
assert(algo.is_optimal());
|
|
|
|
return flow;
|
|
} // push_relabel_max_flow()
|
|
|
|
template <class Graph, class P, class T, class R>
|
|
typename detail::edge_capacity_value<Graph, P, T, R>::type
|
|
push_relabel_max_flow
|
|
(Graph& g,
|
|
typename graph_traits<Graph>::vertex_descriptor src,
|
|
typename graph_traits<Graph>::vertex_descriptor sink,
|
|
const bgl_named_params<P, T, R>& params)
|
|
{
|
|
return push_relabel_max_flow
|
|
(g, src, sink,
|
|
choose_const_pmap(get_param(params, edge_capacity), g, edge_capacity),
|
|
choose_pmap(get_param(params, edge_residual_capacity),
|
|
g, edge_residual_capacity),
|
|
choose_const_pmap(get_param(params, edge_reverse), g, edge_reverse),
|
|
choose_const_pmap(get_param(params, vertex_index), g, vertex_index)
|
|
);
|
|
}
|
|
|
|
template <class Graph>
|
|
typename property_traits<
|
|
typename property_map<Graph, edge_capacity_t>::const_type
|
|
>::value_type
|
|
push_relabel_max_flow
|
|
(Graph& g,
|
|
typename graph_traits<Graph>::vertex_descriptor src,
|
|
typename graph_traits<Graph>::vertex_descriptor sink)
|
|
{
|
|
bgl_named_params<int, buffer_param_t> params(0); // bogus empty param
|
|
return push_relabel_max_flow(g, src, sink, params);
|
|
}
|
|
|
|
} // namespace boost
|
|
|
|
#endif // BOOST_PUSH_RELABEL_MAX_FLOW_HPP
|
|
|