367 lines
11 KiB
C++
Executable File
367 lines
11 KiB
C++
Executable File
// Copyright (c) 2006 Xiaogang Zhang
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifndef BOOST_MATH_BESSEL_JY_HPP
|
|
#define BOOST_MATH_BESSEL_JY_HPP
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma once
|
|
#endif
|
|
|
|
#include <boost/math/tools/config.hpp>
|
|
#include <boost/math/special_functions/gamma.hpp>
|
|
#include <boost/math/special_functions/sign.hpp>
|
|
#include <boost/math/special_functions/hypot.hpp>
|
|
#include <boost/math/special_functions/sin_pi.hpp>
|
|
#include <boost/math/special_functions/cos_pi.hpp>
|
|
#include <boost/math/special_functions/detail/simple_complex.hpp>
|
|
#include <boost/math/special_functions/detail/bessel_jy_asym.hpp>
|
|
#include <boost/math/constants/constants.hpp>
|
|
#include <boost/math/policies/error_handling.hpp>
|
|
#include <boost/mpl/if.hpp>
|
|
#include <boost/type_traits/is_floating_point.hpp>
|
|
#include <complex>
|
|
|
|
// Bessel functions of the first and second kind of fractional order
|
|
|
|
namespace boost { namespace math {
|
|
|
|
namespace detail {
|
|
|
|
// Calculate Y(v, x) and Y(v+1, x) by Temme's method, see
|
|
// Temme, Journal of Computational Physics, vol 21, 343 (1976)
|
|
template <typename T, typename Policy>
|
|
int temme_jy(T v, T x, T* Y, T* Y1, const Policy& pol)
|
|
{
|
|
T g, h, p, q, f, coef, sum, sum1, tolerance;
|
|
T a, d, e, sigma;
|
|
unsigned long k;
|
|
|
|
BOOST_MATH_STD_USING
|
|
using namespace boost::math::tools;
|
|
using namespace boost::math::constants;
|
|
|
|
BOOST_ASSERT(fabs(v) <= 0.5f); // precondition for using this routine
|
|
|
|
T gp = boost::math::tgamma1pm1(v, pol);
|
|
T gm = boost::math::tgamma1pm1(-v, pol);
|
|
T spv = boost::math::sin_pi(v, pol);
|
|
T spv2 = boost::math::sin_pi(v/2, pol);
|
|
T xp = pow(x/2, v);
|
|
|
|
a = log(x / 2);
|
|
sigma = -a * v;
|
|
d = abs(sigma) < tools::epsilon<T>() ?
|
|
T(1) : sinh(sigma) / sigma;
|
|
e = abs(v) < tools::epsilon<T>() ? v*pi<T>()*pi<T>() / 2
|
|
: 2 * spv2 * spv2 / v;
|
|
|
|
T g1 = (v == 0) ? -euler<T>() : (gp - gm) / ((1 + gp) * (1 + gm) * 2 * v);
|
|
T g2 = (2 + gp + gm) / ((1 + gp) * (1 + gm) * 2);
|
|
T vspv = (fabs(v) < tools::epsilon<T>()) ? 1/constants::pi<T>() : v / spv;
|
|
f = (g1 * cosh(sigma) - g2 * a * d) * 2 * vspv;
|
|
|
|
p = vspv / (xp * (1 + gm));
|
|
q = vspv * xp / (1 + gp);
|
|
|
|
g = f + e * q;
|
|
h = p;
|
|
coef = 1;
|
|
sum = coef * g;
|
|
sum1 = coef * h;
|
|
|
|
T v2 = v * v;
|
|
T coef_mult = -x * x / 4;
|
|
|
|
// series summation
|
|
tolerance = tools::epsilon<T>();
|
|
for (k = 1; k < policies::get_max_series_iterations<Policy>(); k++)
|
|
{
|
|
f = (k * f + p + q) / (k*k - v2);
|
|
p /= k - v;
|
|
q /= k + v;
|
|
g = f + e * q;
|
|
h = p - k * g;
|
|
coef *= coef_mult / k;
|
|
sum += coef * g;
|
|
sum1 += coef * h;
|
|
if (abs(coef * g) < abs(sum) * tolerance)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
policies::check_series_iterations("boost::math::bessel_jy<%1%>(%1%,%1%) in temme_jy", k, pol);
|
|
*Y = -sum;
|
|
*Y1 = -2 * sum1 / x;
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Evaluate continued fraction fv = J_(v+1) / J_v, see
|
|
// Abramowitz and Stegun, Handbook of Mathematical Functions, 1972, 9.1.73
|
|
template <typename T, typename Policy>
|
|
int CF1_jy(T v, T x, T* fv, int* sign, const Policy& pol)
|
|
{
|
|
T C, D, f, a, b, delta, tiny, tolerance;
|
|
unsigned long k;
|
|
int s = 1;
|
|
|
|
BOOST_MATH_STD_USING
|
|
|
|
// |x| <= |v|, CF1_jy converges rapidly
|
|
// |x| > |v|, CF1_jy needs O(|x|) iterations to converge
|
|
|
|
// modified Lentz's method, see
|
|
// Lentz, Applied Optics, vol 15, 668 (1976)
|
|
tolerance = 2 * tools::epsilon<T>();
|
|
tiny = sqrt(tools::min_value<T>());
|
|
C = f = tiny; // b0 = 0, replace with tiny
|
|
D = 0.0L;
|
|
for (k = 1; k < policies::get_max_series_iterations<Policy>() * 100; k++)
|
|
{
|
|
a = -1;
|
|
b = 2 * (v + k) / x;
|
|
C = b + a / C;
|
|
D = b + a * D;
|
|
if (C == 0) { C = tiny; }
|
|
if (D == 0) { D = tiny; }
|
|
D = 1 / D;
|
|
delta = C * D;
|
|
f *= delta;
|
|
if (D < 0) { s = -s; }
|
|
if (abs(delta - 1.0L) < tolerance)
|
|
{ break; }
|
|
}
|
|
policies::check_series_iterations("boost::math::bessel_jy<%1%>(%1%,%1%) in CF1_jy", k / 100, pol);
|
|
*fv = -f;
|
|
*sign = s; // sign of denominator
|
|
|
|
return 0;
|
|
}
|
|
|
|
template <class T>
|
|
struct complex_trait
|
|
{
|
|
typedef typename mpl::if_<is_floating_point<T>,
|
|
std::complex<T>, sc::simple_complex<T> >::type type;
|
|
};
|
|
|
|
// Evaluate continued fraction p + iq = (J' + iY') / (J + iY), see
|
|
// Press et al, Numerical Recipes in C, 2nd edition, 1992
|
|
template <typename T, typename Policy>
|
|
int CF2_jy(T v, T x, T* p, T* q, const Policy& pol)
|
|
{
|
|
BOOST_MATH_STD_USING
|
|
|
|
typedef typename complex_trait<T>::type complex_type;
|
|
|
|
complex_type C, D, f, a, b, delta, one(1);
|
|
T tiny, zero(0.0L);
|
|
unsigned long k;
|
|
|
|
// |x| >= |v|, CF2_jy converges rapidly
|
|
// |x| -> 0, CF2_jy fails to converge
|
|
BOOST_ASSERT(fabs(x) > 1);
|
|
|
|
// modified Lentz's method, complex numbers involved, see
|
|
// Lentz, Applied Optics, vol 15, 668 (1976)
|
|
T tolerance = 2 * tools::epsilon<T>();
|
|
tiny = sqrt(tools::min_value<T>());
|
|
C = f = complex_type(-0.5f/x, 1.0L);
|
|
D = 0;
|
|
for (k = 1; k < policies::get_max_series_iterations<Policy>(); k++)
|
|
{
|
|
a = (k - 0.5f)*(k - 0.5f) - v*v;
|
|
if (k == 1)
|
|
{
|
|
a *= complex_type(T(0), 1/x);
|
|
}
|
|
b = complex_type(2*x, T(2*k));
|
|
C = b + a / C;
|
|
D = b + a * D;
|
|
if (C == zero) { C = tiny; }
|
|
if (D == zero) { D = tiny; }
|
|
D = one / D;
|
|
delta = C * D;
|
|
f *= delta;
|
|
if (abs(delta - one) < tolerance) { break; }
|
|
}
|
|
policies::check_series_iterations("boost::math::bessel_jy<%1%>(%1%,%1%) in CF2_jy", k, pol);
|
|
*p = real(f);
|
|
*q = imag(f);
|
|
|
|
return 0;
|
|
}
|
|
|
|
enum
|
|
{
|
|
need_j = 1, need_y = 2
|
|
};
|
|
|
|
// Compute J(v, x) and Y(v, x) simultaneously by Steed's method, see
|
|
// Barnett et al, Computer Physics Communications, vol 8, 377 (1974)
|
|
template <typename T, typename Policy>
|
|
int bessel_jy(T v, T x, T* J, T* Y, int kind, const Policy& pol)
|
|
{
|
|
BOOST_ASSERT(x >= 0);
|
|
|
|
T u, Jv, Ju, Yv, Yv1, Yu, Yu1(0), fv, fu;
|
|
T W, p, q, gamma, current, prev, next;
|
|
bool reflect = false;
|
|
unsigned n, k;
|
|
int s;
|
|
|
|
static const char* function = "boost::math::bessel_jy<%1%>(%1%,%1%)";
|
|
|
|
BOOST_MATH_STD_USING
|
|
using namespace boost::math::tools;
|
|
using namespace boost::math::constants;
|
|
|
|
if (v < 0)
|
|
{
|
|
reflect = true;
|
|
v = -v; // v is non-negative from here
|
|
kind = need_j|need_y; // need both for reflection formula
|
|
}
|
|
n = iround(v, pol);
|
|
u = v - n; // -1/2 <= u < 1/2
|
|
|
|
if (x == 0)
|
|
{
|
|
*J = *Y = policies::raise_overflow_error<T>(
|
|
function, 0, pol);
|
|
return 1;
|
|
}
|
|
|
|
// x is positive until reflection
|
|
W = T(2) / (x * pi<T>()); // Wronskian
|
|
if (x <= 2) // x in (0, 2]
|
|
{
|
|
if(temme_jy(u, x, &Yu, &Yu1, pol)) // Temme series
|
|
{
|
|
// domain error:
|
|
*J = *Y = Yu;
|
|
return 1;
|
|
}
|
|
prev = Yu;
|
|
current = Yu1;
|
|
for (k = 1; k <= n; k++) // forward recurrence for Y
|
|
{
|
|
next = 2 * (u + k) * current / x - prev;
|
|
prev = current;
|
|
current = next;
|
|
}
|
|
Yv = prev;
|
|
Yv1 = current;
|
|
if(kind&need_j)
|
|
{
|
|
CF1_jy(v, x, &fv, &s, pol); // continued fraction CF1_jy
|
|
Jv = W / (Yv * fv - Yv1); // Wronskian relation
|
|
}
|
|
else
|
|
Jv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it.
|
|
}
|
|
else // x in (2, \infty)
|
|
{
|
|
// Get Y(u, x):
|
|
// define tag type that will dispatch to right limits:
|
|
typedef typename bessel_asymptotic_tag<T, Policy>::type tag_type;
|
|
|
|
T lim;
|
|
switch(kind)
|
|
{
|
|
case need_j:
|
|
lim = asymptotic_bessel_j_limit<T>(v, tag_type());
|
|
break;
|
|
case need_y:
|
|
lim = asymptotic_bessel_y_limit<T>(tag_type());
|
|
break;
|
|
default:
|
|
lim = (std::max)(
|
|
asymptotic_bessel_j_limit<T>(v, tag_type()),
|
|
asymptotic_bessel_y_limit<T>(tag_type()));
|
|
break;
|
|
}
|
|
if(x > lim)
|
|
{
|
|
if(kind&need_y)
|
|
{
|
|
Yu = asymptotic_bessel_y_large_x_2(u, x);
|
|
Yu1 = asymptotic_bessel_y_large_x_2(u + 1, x);
|
|
}
|
|
else
|
|
Yu = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it.
|
|
if(kind&need_j)
|
|
{
|
|
Jv = asymptotic_bessel_j_large_x_2(v, x);
|
|
}
|
|
else
|
|
Jv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it.
|
|
}
|
|
else
|
|
{
|
|
CF1_jy(v, x, &fv, &s, pol);
|
|
// tiny initial value to prevent overflow
|
|
T init = sqrt(tools::min_value<T>());
|
|
prev = fv * s * init;
|
|
current = s * init;
|
|
for (k = n; k > 0; k--) // backward recurrence for J
|
|
{
|
|
next = 2 * (u + k) * current / x - prev;
|
|
prev = current;
|
|
current = next;
|
|
}
|
|
T ratio = (s * init) / current; // scaling ratio
|
|
// can also call CF1_jy() to get fu, not much difference in precision
|
|
fu = prev / current;
|
|
CF2_jy(u, x, &p, &q, pol); // continued fraction CF2_jy
|
|
T t = u / x - fu; // t = J'/J
|
|
gamma = (p - t) / q;
|
|
Ju = sign(current) * sqrt(W / (q + gamma * (p - t)));
|
|
|
|
Jv = Ju * ratio; // normalization
|
|
|
|
Yu = gamma * Ju;
|
|
Yu1 = Yu * (u/x - p - q/gamma);
|
|
}
|
|
if(kind&need_y)
|
|
{
|
|
// compute Y:
|
|
prev = Yu;
|
|
current = Yu1;
|
|
for (k = 1; k <= n; k++) // forward recurrence for Y
|
|
{
|
|
next = 2 * (u + k) * current / x - prev;
|
|
prev = current;
|
|
current = next;
|
|
}
|
|
Yv = prev;
|
|
}
|
|
else
|
|
Yv = std::numeric_limits<T>::quiet_NaN(); // any value will do, we're not using it.
|
|
}
|
|
|
|
if (reflect)
|
|
{
|
|
T z = (u + n % 2);
|
|
*J = boost::math::cos_pi(z, pol) * Jv - boost::math::sin_pi(z, pol) * Yv; // reflection formula
|
|
*Y = boost::math::sin_pi(z, pol) * Jv + boost::math::cos_pi(z, pol) * Yv;
|
|
}
|
|
else
|
|
{
|
|
*J = Jv;
|
|
*Y = Yv;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
} // namespace detail
|
|
|
|
}} // namespaces
|
|
|
|
#endif // BOOST_MATH_BESSEL_JY_HPP
|
|
|