2008-12-01 06:39:31 +00:00

128 lines
3.9 KiB
C++
Executable File

// boost atanh.hpp header file
// (C) Copyright Hubert Holin 2001.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org for updates, documentation, and revision history.
#ifndef BOOST_ATANH_HPP
#define BOOST_ATANH_HPP
#ifdef _MSC_VER
#pragma once
#endif
#include <cmath>
#include <boost/config.hpp>
#include <boost/math/tools/precision.hpp>
#include <boost/math/policies/error_handling.hpp>
#include <boost/math/special_functions/math_fwd.hpp>
// This is the inverse of the hyperbolic tangent function.
namespace boost
{
namespace math
{
namespace detail
{
#if defined(__GNUC__) && (__GNUC__ < 3)
// gcc 2.x ignores function scope using declarations,
// put them in the scope of the enclosing namespace instead:
using ::std::abs;
using ::std::sqrt;
using ::std::log;
using ::std::numeric_limits;
#endif
// This is the main fare
template<typename T, typename Policy>
inline T atanh_imp(const T x, const Policy& pol)
{
using ::std::abs;
using ::std::sqrt;
using ::std::log;
using ::std::numeric_limits;
T const one = static_cast<T>(1);
T const two = static_cast<T>(2);
static T const taylor_2_bound = sqrt(tools::epsilon<T>());
static T const taylor_n_bound = sqrt(taylor_2_bound);
static const char* function = "boost::math::atanh<%1%>(%1%)";
if (x < -one)
{
return policies::raise_domain_error<T>(
function,
"atanh requires x >= -1, but got x = %1%.", x, pol);
}
else if (x < -one + tools::epsilon<T>())
{
// -Infinity:
return -policies::raise_overflow_error<T>(function, 0, pol);
}
else if (x > one - tools::epsilon<T>())
{
// Infinity:
return -policies::raise_overflow_error<T>(function, 0, pol);
}
else if (x > +one)
{
return policies::raise_domain_error<T>(
function,
"atanh requires x <= 1, but got x = %1%.", x, pol);
}
else if (abs(x) >= taylor_n_bound)
{
return(log( (one + x) / (one - x) ) / two);
}
else
{
// approximation by taylor series in x at 0 up to order 2
T result = x;
if (abs(x) >= taylor_2_bound)
{
T x3 = x*x*x;
// approximation by taylor series in x at 0 up to order 4
result += x3/static_cast<T>(3);
}
return(result);
}
}
}
template<typename T, typename Policy>
inline typename tools::promote_args<T>::type atanh(const T x, const Policy& pol)
{
typedef typename tools::promote_args<T>::type result_type;
return detail::atanh_imp(
static_cast<result_type>(x), pol);
}
template<typename T>
inline typename tools::promote_args<T>::type atanh(const T x)
{
typedef typename tools::promote_args<T>::type result_type;
return detail::atanh_imp(
static_cast<result_type>(x), policies::policy<>());
}
}
}
#endif /* BOOST_ATANH_HPP */